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Abstract. In recent years, the explosion of research on large-scale networks has
been fueled to a large extent by the increasing availability of large, detailed net-
work data sets. Specifically, exploration of social networks constitutes a growing
field of research, as they generate a huge amount of data on a daily basis and
are the main tool for networking, communications, and content sharing. Explor-
ing these networks is resource-consuming (time, money, energy, etc.). Moreover,
uncertainty is a crucial aspect of graph exploration since links costs are unknown
in advance, e.g., creating a positive influence between two people in social net-
works. One approach to model this problem is the stochastic graph exploration
problem [4], where, given a graph and a source vertex, rewards on vertices, and
distributions for the costs of the edges. The goal is to probe a subset of the edges,
so the total cost of the edges is at most some prespecified budget, and the sub-
graph is connected, containing the source vertex, and maximizes the total reward
of the spanned vertices. In this stochastic setting, an optimal probing strategy is
likely to be adaptive, i.e., it may determine the next edge to probe based on the
realized costs of the already probed edges. As computing such adaptive strategies
is intractable [15], we focus on developing non-adaptive strategies, which fix a
list of edges to probe in advance. A non-adaptive strategy would not be compet-
itive versus the optimal adaptive one unless it uses a budget augmentation. The
current results demand an augmentation factor, which depends logarithmically on
the number of nodes. Such a factor is unrealistic in large-scale network scenarios.
In this paper, we provide constant competitive non-adaptive strategies using only
a constant budget augmentation for various scenarios.

Keywords: Stochastic optimization · Graph exploration · Non-adaptive
strategies

1 Introduction

Network exploration is a fundamental paradigm for discovering information available at
the nodes of a network. The rise of social networks increased the number of nodes and
links dramatically, and exploring them demands many resources. A network exploration
algorithm defines a probing strategy that decides at each stage of the process which
edges to probe. For the exploration of social networks, the network structure is known in
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advance, e.g., followers on Twitter, friends on Facebook, etc. However, the aggregation
of information in this network is uncertain, e.g., whether tweets/posts of a user would
be retweeted/shared by their followers. Most of the recent work [23,26,27] deals with
real-world networks’ exploration when a limited budget is available, but they do not
provide a comprehensive theoretical study of these problems. In this work, we continue
the theoretical study of exploring networks, initiated by [4].

The main difficulty in designing effective probing strategies, other than their enor-
mous size, is that they must perform well in an uncertain environment, where the
amount of resource (cost) associated with a specific link (edge) is unknown in advance.
A common assumption, instead, is that the distributions of the edges’ costs may be well-
estimated by using various properties of the connecting nodes. Accordingly, a good
probing strategy might have an adaptive nature; it may determine the future network
portion to be explored according to the realized cost of the edges already explored.
Unfortunately, finding such optimal adaptive strategies is often intractable [15]. More-
over, implementing an efficient adaptive strategy might be impossible. In various explo-
ration process applications, many machines work in parallel, and the updated adaptive
strategy must be communicated to the machines participating in the process. As a result,
the communication cost required by an adaptive strategy may also be high. Therefore,
we are interested in devising non-adaptive probing strategies that are simple and that
define the sequence of probes in advance before the process is started. We continue
the recent line of research [8,21,22] developing polynomial computable non-adaptive
strategies that are competitive against the optimal adaptive strategy.

In this work, we extended the work in [4] where they considered exploring a net-
work from a root node. The graph has deterministic rewards on nodes and costs on
edges, where each edge cost is drawn independently from a known distribution. They
mainly focused on designing non-adaptive strategies for exploring the graph, where they
demonstrated that in order to achieve a reasonable approximation guaranteeing a bud-
get augmentation is mandatory, so a crucial aspect is the augmentation factor used by
the non-adaptive strategy. Unfortunately, they only provide algorithms that use budget
augmentation, which depends on the logarithm of the number of nodes in the network
(and the maximal revenue from a node). As the main motivation is exploring large-
scale networks where the number of nodes is immense, those algorithms are, in fact,
impractical. In this paper, we develop non-adaptive algorithms for strategies that use a
considerably less amount of resources compared to the currently known algorithms.

Problem Definition. Given an instance I = (V,E, r, π,R, B), the underlying graph
is G(V,E) and r ∈ V is the source vertex, and n = |V | is the number of vertices.
The edge costs C : E → R≥0 are drawn independently according to π(e), for e ∈
E, and deterministic rewards of vertices R : V → R≥0. (The model can be easily
extended to rewards distributed according to independent random variables.) A graph-
exploration process constructs a set of edges F ⊆ E that it probes. All vertices of the
subgraph of G spanned by F must be connected to r via the edges of F . The process
probes one by one the edges and adds them to F . The actual cost of an edge e, drawn
independently from the distribution π(e), is revealed only when the edge is probed. The
objective is to maximize the expected total reward from the vertices spanned by the
edge set F , while the total cost of the edges in F remains bounded by a prespecified
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budget B. As soon as the total cost of F exceeds B, the process terminates. Our goal
is to design a polynomial computable non-adaptive strategy, where, given an instance
I , it computes an ordered list of the edges in advance, where every prefix of the list
induces a subtree that contains r. The expected gain of a list strategy is the sum of
the vertex’s reward times the probability that the vertex is successfully added, i.e., that
the total cost of the vertex’s list prefix does not exceed the budget. We compare this
gain to an adaptive strategy expected gain, which may decide on the next edge to be
probed after the cost of all previously probed edges is revealed. Note that the adaptive
algorithm does not know the realization of the edges’ costs in advance, and once it
probes an edge, it must be added to its set. As mentioned, there exist simple instances
where the ratio between any non-adaptive expected reward to an adaptive reward is
Ω(n). Therefore, we allow the non-adaptive one to use a limited amount of budget
augmentation. Accordingly, we call an algorithm (α, β)-approximate if it computes a
strategy which uses budget β · B, and obtains an expected reward of at least 1/α times
the optimal reward (obtained by an adaptive algorithm). In this work, we will focus on
algorithms that are (O(1), O(1))-approximate, i.e., algorithms for strategies that use a
constant factor of budget augmentation and ensure a constant fraction of the optimal
adaptive reward.

1.1 Summary of Results and Techniques

Our main contribution is developing non-adaptive competitive algorithms for the
stochastic graph exploration problem, which uses only a constant amount of budget
augmentations. We provide positive results for two important scenarios: spider graphs
and bounded-weighted-depth trees.

Spider Graphs. We study a spider-tree graph where all the vertices except the root
have an out-degree of at most 1. These graphs are natural extensions for job scheduling
applications for the stochastic knapsack, introduced in [15]. In this application, the goal
is to schedule a maximum-value subset of n jobs with uncertain duration within a fixed
amount of time, and captures the reality of job scheduling, where we cannot go back in
time, in case a scheduled job has taken too long to complete. The spider graph instances
apply to scenarios where before processing a certain job, it must process some chain
of jobs in advance, and the duration of each job in the chain is stochastic. Note that
for scenarios where the reward is just when completing a complete job chain (i.e., the
reward is zero on non-leafs vertices), the spider-tree formulation gives extra power to
the adaptive strategies versus the stochastic knapsack formulation. This arises from the
fact that in such instances, an adaptive strategy may abort a chain in the middle, while
in the knapsack setting, the entire chain must be represented as a single edge (so if
begun, it must be completed). On the other hand, in both formulations, the non-adaptive
strategies must complete the entire chain of jobs once started.

Bounded Weighted Depth Trees. For a general tree structure, we achieved a constant
approximation and augmentation for bounded weighted depth trees instances. In those
instances, the expected cost of the path from the root to each node is bounded (with
respect to the entire budget). The structure of the social network (as in Six degrees of
separation assumption [30]) implies that this scenario is extremely practical.
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Our Techniques. Given an instance I, we bound the value of the optimal adaptive
strategy using a linear program (LP) formulation ΦI . This extends the LP formulation
of [15] and captures the dependence between the probing probabilities of different edges
in the graph. In addition, we define a relaxation of this LP, namely Φ̂I , and characterize
the structure of an optimal solution for it. In order to solve spider graphs instances,
we divide the set of nodes into two, the risky nodes, where the expected cost from the
root to those nodes is more than half of the entire budget, and the rest of the nodes
(which are a connected component that contains r). For the risky nodes, using the solu-
tion of the LP ΦI , we prove that a non-adaptive strategy that probes a single leg and
uses budget augmentation is a constant competitive. For the non-risky nodes, we use
the solution’s structure of Φ̂I and present a competitive set strategy. Combining the two
results implies a constant approximation algorithm that uses at most constant augmen-
tation. Our algorithm for bounded-weighted-depth trees instances also uses the solution
of Φ̂I . However, the resulting structure of the optimal solution is more complex, and the
total expected cost of the edges in support of the solution might be much higher than the
budget. To address this issue, we introduce the Tree Decomposition algorithm, which
can decompose such a solution to a bounded number of subtrees, where each subtree
contains r and has a bounded total expected cost. We prove that sampling one of those
subtrees (entirely) is a competitive non-adaptive strategy. Finally, we prove the limita-
tion of the proposed LP ΦI , by presenting an instance where the gap between the LP
and an adaptive solution (even with budget augmentation) is unbounded, which raises
questions about future directions on how to bound a general instance of this problem.

1.2 Related Work

The first work on the adaptivity gap of stochastic problems has been studied for the
knapsack problem [10,15]. Note that the stochastic knapsack problem is a special
case of the problem we study, where the underlying graph is a star-graph. As men-
tioned, the model studied in this paper has been introduced in [4]. In [4], they show
an Ω(n) adaptivity gap for this problem, and in order to circumvent the impossibility
result, they allow a limited amount of resource augmentation. They presented polyno-
mial time computable non-adaptive strategies in a graph of n vertices and where R is
maximum reward of a vertex, which are (O(1), O(log nR))-approximate for trees and
(O(log(nR)), O(log(nR)))-approximate for general graphs.

Another set of problems related to the stochastic graph exploration problem are
various stochastic orienteering problems [8,19,28]. In stochastic orienteering, the set
of traversed edges must form a path in a metric graph with deterministic costs on the
edges, while the time spent on a node is a random variable, which follows an a priori
known distribution. In stochastic graph exploration, the random variables are the costs
of the edges of the graph, but we cannot ensure that the costs on the edges form a metric
since the random variables are independent.

The adaptivity gap has also been studied for budgeted multi-armed bandits [17,
18,24] by resorting to suitable linear programming relaxation. Unlike previous work
on budgeted multi-armed bandit problems, we consider the setting in which new arms
appear after some arms are pulled. Stochastic probing problems have also been studied
for matching [1,7,13], motivated by kidney exchange and for more general classes of
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matroid optimization problems [20,21]. Various other stochastic problems are recently
studied, such as variations on the Pandora’s box [5,9,11,12,25], stochastic k-TSP [22],
scheduling [2,3,16], probing [14,21,29], stochastic vertex cover in (hyper-)graphs [6],
etc.

2 Preliminaries

Notations. We assume without loss of generality that B = 1, and we focus of on tree
instances. For instance, I = (V,E, r, π,R), where r ∈ V is the root of the directed tree
G = (V,E), we assume that the edges are pointed away from the root. Accordingly, we
denote Parent(v) as the parent of a vertex v, the vertex connected to v on its path to
the root, �Parent(v), v� ∈ E, and let ev = �Parent(v), v� ∈ E. For ease of notation,
we denote C(v) = C(ev) (C(r) = 0), and π(v) = π(ev). Let Path(u, v) be the
set of vertices on the path from u to v (including u, v), and let D(v) = Path(r, v).
For a subtree F ⊆ V , let C(F ) be the total realized cost of its edges, i.e., C(F ) =�

e∈F C(e) and let R(F ) be the total reward of its vertices, i.e. R(F ) =
�

v∈F R(v).

Types of Strategies. An adaptive strategy determines for any subtree F ⊆ V , r ∈ F ,
and remaining budget 1 − C(F ) which adjacent edge to F to probe, (i.e., edge �u, v�
such that u ∈ F and v /∈ F ). Note that if C(F ) > 1, the strategy must halt. A vertex
v is successfully added if ev is probed and C(F ) ≤ 1 immediately afterward (R(v) is
added to the total gain of the strategy). For a fixed adaptive strategy, we denote xv the
probability that this strategy probes the edge ev , and yv the probability that this strategy
successfully add the vertex v to its connected component. The expected gain of this
strategy is: �

v∈V
yv · R(v).

In Sect. 3, we bound the optimal solution value via a set of constraints on {xv, yv : v ∈
V }.

The two main non-adaptive strategies are: the list strategy and the set strategy. A
list strategy specifies an ordered list of the vertices L = (v1 = r, . . . , vn), where for
any k, (v1, . . . , vk) is a connected subtree. The expected gain of a list strategy L with a
budget B is:

n�

k=1

Pr

�
k�

i=1

C(vi) ≤ B
�
· R(vk).

A set strategy (all-or-nothing) specifies a subtree F (r ∈ F ) in advance, and either
gains the entire content of F , if the total cost of F did not overflow the budget, or gains
nothing otherwise. The expected gain of a set strategy F with a budget B is:

Pr[C(F ) ≤ B] · R(F ).
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3 Bounding the Optimal Adaptive Policy

In this section, we bound the value of an adaptive strategy given an instance I. Recall
that for a fixed strategy, we denote xv, the probability that the strategy probes the edge
ev, and yv , the probability that the strategy successfully add vertex v to its connected
component. We first note that we can bound the probability that a strategy probes an
edge by the probability it probes its successor edge, i.e., for any v ∈ V we have xv ≤
xParent(v).

A simple Example 16, demonstrated that this condition is not sufficient. Instead, we
bound yv (the probability of successfully adding v) by the probability it probed one of
its predecessors edge eu ∈ D(v), times the probability the cost of the path between u, v
is less than the adaptive budget (1).

Lemma 1. Given a tree-instance I, and v, u ∈ V s.t. u ∈ D(v), then

yv ≤ Pr[C(Path(u, v)) ≤ 1] · xu.

Proof. Given a pair of vertices v, u, where u ∈ D(v), by the definition of a feasible
adaptive strategy, it may probe the pathPath(u, v) only if it probes the edge eu first, and
the total cost of Path(u, v) is independent of the probability of sampling eu. Finally,
in order that v would be successfully added to F , the total cost of this path must be at
most 1, i.e., C(Path(u, v)) ≤ 1.

Our second lemma bounds the set of all vertices that an adaptive policy tries to
insert. We extend the lemma in [15] to deal with budget augmentation. The main idea
is to exploit the property of irrevocable decisions, which forces the adaptive policy to
keep a vertex even if its size turns out to be large. Let µB(v) = E[min{B, C(v)}]
the truncated expected size with respect to the augmented budget B, and µB(F ) =�

v∈F µB(v). For ease of notation, we denote µ(v) = µ1(v).

Lemma 2. For B ≥ 1 we have
�

v∈V xvµB(v) ≤ 1 + B.

Proof. Our proof extends lemma 2 in [15]. For an adaptive policy, let St denote the
set of the first t vertices chosen by it. Once the size of St overflows, no further ver-
tices are added to St, and St remains constant after this. Let CB(v) = min{C(v),B},
We define a series Xt =

�
i∈St

CB(vi) − µB(vi). It is easy to verify Xt is a mar-
tingale, and since X0 = 0, we have E[Xt] = 0, which yields E

��
i∈St

CB(vi)
�
=

E
��

i∈St
µB(vi)

�
. The process stops whenC(St) > 1 or we have no more vertices left.

Since
�

i∈St
CB(vi) ≤ C(St) and each CB(vi) ≤ B, we get

�
i∈St

CB(vi) ≤ 1 + B
for any t > 0. The mean size of all the vertices inserted by the policy (including the
first one which exceeds knapsack capacity) is µ(S) = limt→∞ µ(St) and therefore
E[µ(S)] = limt→∞ E[µ(St)] ≤ 1 + B.

Given an instance I, we define ΦI,B(t) as the optimal solution value for the following
linear program (Fig. 1):

Using Lemmas 1, 2, we have:

Theorem 3. Given a tree-instance I, the expected gain of any adaptive policy with
budget B is at most ΦI,B(1 + B).
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Fig. 1. ΦI,B(t) - the linear program for bounding the optimal adaptive policy.

Next, we provide several characterizations for the solution of Φ(t) (we omit the
subscripts I,B for a fixed set of parameters). First, we prove that ΦI,B(t) is a concave
function.

Claim. For γ ∈ [0, 1] we have, ΦI,B(γ · t) ≥ γ · ΦI,B(t).

Proof. Given an optimal solution yv, xv for Φ(t), then γ ·xv, γ ·yv is a feasible solution
for Φ(γ · t) and its values is γ · ΦI,B(t).

The next claim states that the constraint xu ≤ xParent(u) for u ∈ V \ {r} implied
by the other constraints.

Claim. There exists an optimal solution of ΦI,B(t), such for u ∈ D(v) that

xv ≤ xu ·Pr[C(Path(u,Parent (v))) ≤ 1] .

Proof. Given a solution, and v, u ∈ D(v) such that xv > xu ·
Pr[C(Path(u,Parent(v))) ≤ 1], we show that xv is not binding in any constraint and
can be reduced. For a constraint v, w (v ∈ D(w)):

xv ·Pr[C(Path(v,w)) ≤ 1] > xu ·Pr[C(Path(u,Parent(v))) ≤ 1] ·Pr[C(Path(v,w)) ≤ 1]

≥ xu ·Pr[C(Path(u, w)) ≤ 1] ≥ yw,

where the first inequality is derived from our assumption, the second inequality arises
from: Path(u,w) = Path(u,Parent(v)) ∪ Path(v,w), and the last inequality is a by
the definition of ΦI .

Corollary 4. There exists an optimal solution of ΦI,B(t), such that, for v ∈ V we have
xv ≤ xParent(v).

Next, we define a linear program Φ̂I,B(t), a relaxation for the original linear pro-
gram ΦI,B(t), and characterize an optimal solution for it.

Using Corollary 4, and the fact that in ΦI,B, we have yv ≤ xv , we conclude:

Observation 5. For any instance I, and for any t > 0, we have Φ̂I,B(t) ≥ ΦI,B(t).

While Φ̂I,B might not have a constant gap for general instances, see Example 16,
we will use it for sub-instances where the probability of probing any vertex in this
sub-instance is constant. As mentioned, the next lemma would characterize a possible
optimal solution.
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Fig. 2. Φ̂I,B - relaxation for the linear program for bounding the optimal adaptive policy.

Lemma 6. There exists a solution for Φ̂(t), where for each pair of vertices v1, v2 ∈ V ,
such that 0 < xv1 , xv2 < 1, then for all vertices w ∈ Path(v1, v2) we have xw = xv2 .

Proof. We show a constructive proof that starts from an optimal solution x and com-
putes a modified optimal solution x� until the condition holds.

We omit all vertices v and their corresponding edges such that xv = 0. For i ∈
{1, 2}, let vi ∈ V such that 0 < xvi < 1 and Ti = {w : xu = xvi for all u ∈
Path(w, vi)}, such that T1 	= T2 (if such a pair does not exist the condition on x holds).
Note that Ti is a maximal connected subtree, which contains vi and includes vertices
u such that xvi = xu. Assume w.l.o.g that v1, v2 are the roots of their corresponding
subtrees (the closet vertex to r in their corresponding subtrees).

If R(T1) = 0 (or R(T2) = 0), we may set x�u = xu − � for u ∈ T1 and
x�u = xu. Otherwise, without decreasing the value of the solution, for large enough
�, some vertices will join T1 connected component, or the value will reach 0. Similarly,
if µ(T1) = 0 (or µ(T2) = 0), we may set x�u = xu + � for u ∈ T1 and x�u = xu,
otherwise x� is feasible without decreasing the value of the solution. For large enough
�, some vertices will join T1 connected component, or this value will reach 1.

Let g1 =
R(T1)
µ(T1)

and g2 =
R(T2)
µ(T2)

, we prove that in an optimal solution x, g1 = g2.
We show that there exists �� > 0 such that for � ∈ {−��, ��}, the following modified
solution x� is feasible.

x�v =






xv + �, for v ∈ T1

xv − � · µ(T1)µ(T2) , for v ∈ T2

xv, otherwise

First, Constraint 2 holds since:

�

v∈v
x�vµ(v) =

�

v∈V
x�vµ(v) + � · µ(T1)− � · µ(T2) ·

µ(T1)
µ(T2)
=
�

v∈V
xvµ(v).

Second, note that, by definition xParent(vi) > xvi and for all descendants of u of Ti,
xu < xvi , therefore there exists a small enough � for which Constraint 3 will still hold.
Finally, the objective function for x� equals to:

�

�∈L
x�v� ·R(v�)−

�

�∈L
xv� ·R(v�) = � ·R(T1)−� ·R(T2) ·

µ(T1)
µ(T2)
= � ·µ(T1) ·(g1−g2),
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and if g1 	= g2, the value of the objective for x� for � = �� or � = −�� is higher than
the value of the objective for x, which contradicts its optimality. Therefore, by setting
� = min{xParent(v1)−xv1 , xv2 ·

µ(T2)
µ(T1)

}, we have that x� is an optimal feasible solution
and a progress has been made (either xv1 is 1, xv2 is 0, or another vertex added to T1).

Using Lemma 6, we conclude:

Corollary 7. There exists an optimal solution x for Φ̂(t) where there exists sub-trees
T1, T2 ⊆ V and a value ζ ≥ 0 such that for v ∈ T1, xv = 1 and for v ∈ T2,
xv = ζ , and xv = 0 otherwise. The value of this solution is R(T1) + ζ · R(T2), and
µ(T1) + ζ · µ(T2) ≤ t.

Finally, for a subtree F , we prove a lower bound on the probability of the realized
cost of F to be less than (a fraction of) the budget as a function of the subtree truncated
expected size.

Lemma 8. For a subtree F , and γ ∈ [0, 1], we have Pr[C(F ) < γ · B] ≥ 1− µB(F )
γ·B .

Proof.

Pr[C(F ) ≥ γ · B] = Pr[min{C(F ),B} ≥ γ · B]

≤ E[min{C(F ),B}]
γ · B ≤

E

�
�

v∈F
min{C(v),B}

�

γ · B =
µB(F )
γ · B ,

where the first equality is due to γ ≤ 1, the first inequality is given byMarkov’s inequal-
ity, and the second equality arises from the definition of µ.

4 Spider Graphs

Our first objective is to to develop a constant approximation algorithm for spider graphs
instances using a constant augmentation. In spider graphs, all the vertices except the root
have an out-degree of at most 1. Let L be the number of legs in the graph, we denote
in leg i ∈ [L], vi,j as the level j vertex, i.e. a vertex in leg i where its distance from the
root is j, note that this vertex is uniquely defined. Let Ci(j, k) = C(Path(vi,j , vi,k)).
Example 14 (Lemma 1 in [4]) demonstrates that even for this simple graph structure
a budget augmentation is necessary to achieve a constant competitiveness. In addition,
Example 15 demonstrates that even with budget augmentation there might not be a com-
petitive set-strategy. Nevertheless, we show that using a constant budget augmentation,
the adaptivity gap is bounded, by proving there exists a suitable list strategy.

Algorithm SpiderNoAdaptive divides the vertices into two sets, one set contains the
risky vertices, where the expected cost of the path to them is at least half the budget,
and the other set contains the rest of the vertices. The algorithm computes a constant
approximation non-adaptive strategy for each set, and the maximum of those two strate-
gies yield a constant non-adaptive strategy for the entire instance. For the risky vertices,
the algorithm outputs a single arm, we prove that a non-adaptive list strategy that probes
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this arm and uses a constant budget augmentation has a constant competitive ratio. For
the non-risky vertices, the algorithm computes a solution to Φ̂I,1(0.5) according to the
structure of Corollary 7. The algorithm uses this solution to compute a fixed set of
vertices. We prove that a non-adaptive set strategy that probes this set has a constant
competitive ratio.

4.1 Non-adaptive Algorithm

For a constant 0 < � < 1, we show that using (1 + �) budget augmentation, there
exists non-adaptive strategy and its expected gain is O(�) factor of the optimal adap-
tive gain. The algorithm is composed of two parts, the first part would address the
“risky” vertices, vertices with expected cost of the path from the root to them is at
least 0.5, and the second part will deal with the rest of the vertices. Formally, let
Risky = {vi,j : µ(D(vi,j)) > 0.5}. Accordingly, to the spider graph’s notation, let
xi,j the probability that the optimal adaptive strategy probed the edge (vi,j−1, vi,j) and
let yi,j the probability that vi,j is successfully added to the probed sub-tree. The LP
bound for adaptive strategy ΦI,1(t) reduced to:

max
�

i,j

yi,j · R(vi,j)

s.t. :
�

v

xi,jµ1(vi,j) ≤ t

yi,j ≤ Pr[Ci(k, j) ≤ 1] · xi,k for k ≤ j

0 ≤ xi,j , yi,j ≤ 1 for v ∈ V

Data: Spider leg tree instance I(V,E, r, π,R)
Result: Non-adaptive list strategy
Procedure Risky(I)

x, y ← Solve ΦI,1(2)
Li ←

�
j xi,j · µ(vi,j), for all i ∈ L

L∗ ← Li with probability Li/2
return L∗

Procedure NonRisky(I)
x← Solve Φ̂I,1(0.5) // A solution according to Corollary 7
T1 ← {(i, t) : xi,t = 1}, T2 ← {(i, t) : xi,t = ζ}
return arg max{R(T1),R(T2)}

IRisky ← I,R(vi,t) = 0 : for vi,t /∈ Risky
INon ← I,R(vi,t) = 0 : for vi,t ∈ Risky
Tr ← Risky(IRisky)
Tn ← NonRisky(INon)
return argmax{NonAdpative(Tr),NonAdpative(Tn)}
Algorithm SpiderNoAdaptive: Non-adaptive algorithm for spider trees
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4.2 Risky Vertices

Lemma 9. For instance I where R(vi,j) = 0, for vi,j /∈ Risky , Procedure
Risky(I) outputs a list strategy which gains at least �/8 factor of the optimal adap-
tive policy using (1 + �) budget augmentation.

Proof. First note that the procedure is well defined since
�

i Li ≤ 2, by Φ(2)’s
definition. The probability of vertex vi,t to successfully being probed is Li/2 ·
Pr[Ci(1, t) ≤ 1 + �]. For a leg i, let k the first index s.t.

�k
t=1 µ(vi,t) ≥ �/2.

Note that,R(vi,k�) = 0 for for k� < k. Since by the definition of k,
�k�

t=1 µ(vi,t) <
�/2 ≤ 0.5 and therefore, vi,k� /∈ Risky, and R(vi,k�) = 0 by our assumption. There-
fore, it is sufficient to bound the probability of vertices being successfully probed just
for vi,h where h ≥ k and compare it to yi,h the corresponding adaptive probability. We
first show that for a leg i, Li ≥ �/2 · xi,k.

Li =
�

t=1

xi,t · µ(vi,t) ≥
k�

t=1

xi,t · µ(vi,t) ≥ xi,k

k�

t=1

µ(vi,t) ≥ �/2 · xi,k, (4)

where the first inequality is by removing positive terms, the second inequality is by
Corollary 4, and the third inequality is by k’s definition.

Finally, the probability that vi,t (for t ≥ k) is successfully probed:

Li

2
·Pr[Ci(1, t) ≤ 1 + �] ≥ Li

2
·Pr[Ci(1, k − 1) ≤ �] ·Pr[Ci(k, t) ≤ 1]

≥ Li

4
·Pr[Ci(k, t) ≤ 1] ≥

xi,k · �
8

·Pr[Ci(k, t) ≤ 1] ≥
yi,k · �

8
,

where the first inequality is by the decomposition of the path, the second inequality
is by Lemma 8 (γ = �) Pr[Ci(1, k − 1) ≤ �] ≥ 1/2 since

�k−1
j=1 µi,j < �/2 by k’s

definition, the third inequality is by 4 and the last inequality is by (3) in the definition
of ΦI .

4.3 Non-risky Vertices

Lemma 10. For instance I where R(vi,j) = 0, for vi,j ∈ Risky , Procedure
NonRisky(I) outputs a set strategy which gains at least a 1/16 fraction of the opti-
mal strategy gain without budget augmentation.

Proof. Let x be a solution which fulfill the conditions of Corollary 7, and T1, T2
according to the algorithm’s definition. Note that, since xr = 1, therefore T2 is a
single arm. By Observation 5 and by Theorem 3, the optimal gain is bounded by
ΦI,1(2) ≤ ΦI,1(0.5) · 4 ≤ (R(T1) + R(T2)) · 4 ≤ max{R(T1),R(T2)} · 8. Note
that, we have µ(T1) ≤ 0.5, since for vi,t ∈ T1, xi,t = 1 and

�
xi,tµ(vi,t) ≤ 0.5 by

Φ̂I,1(0.5) definition. Second, note that µ(T2) ≤ 0.5, since it’s a single arm, and we
omitted the risky vertices. Therefore Pr[C(Ti) ≤ 1] ≥ 0.5 and the gain of the strategy
is at least 0.5 ·max{R(T1),R(T2)}.
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4.4 Putting Things Together

Theorem 11. For spider graphs instances, and a constant � < 1, there exist a
(24/�, 1 + �)-approximate non-adaptive strategy.

Proof. Clearly, half of the gain is from the risky vertices or from the non-risky vertices.
If most of the gain is from the risky vertices, by Lemma 9, there exists a �/8 competitive
list strategy using 1 + � augmentation. In most of the gain is from non-risky vertices,
then by Lemma 10, there exists 1/16 competitive set strategy without augmentation.
Therefore, if γ ∈ [0, 1] fraction of the optimal gain is out of non-risky vertices, the
maximum reward out of these two strategies, is at least max{γ/16, (1 − γ) · �/8)}
fraction, which is at least 24/� fraction for any γ.

5 Bounded Weighted Depth Trees Instances

We now focus on the practical scenario where the depth of the tree’s instance is
bounded. We define the weighted depth of a graph as the maximum over all vertices
of the total expected cost of the path from the root to them. Formally, an instance is
(β,B) weighted depth bounded, if for all v ∈ V , µB(D(v)) ≤ β. We prove that for
(B · (1 − �),B) bounded weighted depth instances, for some constants � > 0,B ≥ 1,
there exists a constant competitive set strategy with a budget B. Note that for (1− �, 1)
bounded weighted-depth instances, our result implies there exists a constant competi-
tive set strategy without budget augmentation, i.e., (O(1), 1)-approximate strategy. We
observe that, given a solution x for Φ̂I,B(t), and let T be the support tree of x, i.e. v ∈ T
if xv > 0, then unlike for spider graphs, µ(T ) can be much higher than t); see Exam-
ple 18. Nevertheless, we show that, given a tree T (r ∈ T ), such that µ(D(v)) ≤ β (we
omit the subscript B it is clear from the context) for v ∈ T . It is possible to decompose
T to S = {S1, . . . , Sk}, where for all v ∈ T there exists i ∈ [k] such that v ∈ Si. For
all i ∈ [k], Si is a subtree that contains r, and µ(Si) ≤ α, and the number of subtrees is
bounded by k ≤ 
2µ(T )α−β �. Given a subtree T
�, denote ST �(v) = {u : v ∈ D(u)} ∩ T �,

the subtree of v with respect to T �.
Algorithm TreeDecompose works in iterations. At each iteration, it locates a proper

set of subtrees, where the parent of the root of each of those subtrees is the same. It adds
the subtree containing this set and its entire path to the root to the set of sub-trees, and
removes this subset from the current tree. Specifically, it denotes T � as the current sub-
tree. If µ(T �) ≤ α, then T � is a proper sub-tree, and the algorithm adds it to the set of
sub-trees and terminates. Otherwise, it locates a subset of vertices S�, where S� contains
several sub-trees with the same parent w, and µ(S�) ≥ α−β
2 , µ(D(w)∪S�) ≤ α holds.

The algorithm adds D(w) ∪ S� to the set of sub-trees and omits S� from the graph. To
locate such S�, in each iteration, it starts from the root and iteratively proceeds to one
of his children u with the maximum value of µ(ST �(u)), until it reaches a vertex v such
that µ(D(v) ∪ ST �(v)) > α, the algorithm locates S� for the vertex w, the parent of the
vertex v.

Lemma 12. Algorithm TreeDecompose outputs S = {S1, . . . , Sk} a feasible tree
decomposition and k ≤ 
2µ(T )α−β �.
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Input : A (β, 1) weighted depth bounded instance, edge weights µ, and α > β
Output: A tree decomposition S = {S1, . . . , Sk}, where µ(Si) ≤ α for i ∈ [k]

S ← ∅, T � ← T
while µ(T �) > α do

v ← r
while µ(D(v) ∪ ST �(v)) > α do

v ← argmax(v,u)∈E µ(ST �(u))
end
w ← Parent(v)
Let (u1, . . . , uh) such that (w, ui) ∈ T � and µ(ST �(ui)) ≤ µ(ST �(ui+1)) for
i ∈ [h− 1]

h∗ ← argmin{j ∈ [h] : µ(D(w)) +
�h

i=j µ(ST �(ui)) ≤ α}
S� ←

�h
j=h∗ ST �(uj)

S ← S ∪ {(D(w) ∪ S�)}, T � ← T � \ S�

end
return S ∪ {T �}
Algorithm TreeDecompose: Decomposition of a tree to bounded weight rooted
subtrees.

Proof. First, we show that the algorithm is well-defined, and T � is a connected subtree
of T and contains the root at any step, which follows from the fact that the algorithm
only omits a vertex with its entire subtree from T �. Next, we observe that the inner loop
is well-defined, and v would not be a leaf since for any leaf �, we have µ(D(�)) +
µ(ST �(�)) = µ(D(�)) ≤ β ≤ α. Therefore, the inner loop always halts at vertex v 	= r
such that, for w = Parent(v) then v = uh since v = argmax(w,u)∈E µ(ST �(u)).
Therefore, µ(D(w)∪ST �(w)) > α and µ(D(uh)∪ST �(uh)) ≤ α. Note that, h∗ is well-
defined since for j = h, we have: µ(D(w))+µ(ST �(uh)) = µ(D(uh)∪ST �(uh)) ≤ α.
Next, we have that h∗ > 1 since for j = 1 we have µ(D(w)) +

�h
i=1 µ(ST �(ei)) =

µ(D(w) ∪ ST �(w)) > α.
We observe that S = {S1, . . . , Sk} is the tree decomposition of T , since the algo-

rithm terminates only after covering all the vertices. Additionally, each subtree added
to S is (D(w) ∪ S�), where S� =

�h
j=h∗ ST �(uj) is a collection of subtrees and their

path to the root, and by the condition on h∗, we have µ(D(w) ∪ S�) ≤ α.
In order to complete the proof, we need to show that k ≤ 2µ(T )α−β . For any iteration

where µ(T �) > α, let w, v, h∗ be the corresponding values of a main loop iteration, we
have:

α < µ(D(w))+
h�

i=h∗−1
µ(ST �(ui)) ≤ β+

h�

i=h∗−1
µ(ST �(ui)) ≤ β+2

h�

i=h∗

µ(ST �(ui)),

where the first inequality is since h∗ > 1, the second inequality is due to β ≥ D(w)
for all w ∈ T , and the last inequality is a result of µ(ST �(uh∗−1)) ≤ µ(ST �(uh∗)) ≤�h

i=h∗ µ(ST �(ui)) since the vertices ui are sorted accordingly. Therefore, the decrease
in µ(T �) in each such iteration is at least µ(S�) ≥ α−β
2 , the number of iterations (until
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µ(T �) ≤ α) is at most 
2(µ(T )−α)α−β �, and the number of subtrees is at most 
2(µ(T )−α)α−β +
1� ≤ 
2µ(T )α−β � as required.

Theorem 13. For (B · (1− �),B) bounded weighted depth instances, where � > 0,B ≥
1, there exists ( �
2

16·(B+1) ,B)-approximate non-adaptive strategy.

Proof. Let x be a solution to ΦI,B(B + 1), which fulfills the conditions of Corollary 7,
and let T1, T2, ζ be the corresponding integral and fractional trees and the fractional tree
assignment value, respectively. Note that, since xr = 1, we have r ∈ T1. Let r2 be the
root of T2, and let T = T2 ∪D(r2). Assume w.l.o.g. that ζ · R(T ) ≥ R(T1). Note that
by Φ̂I definition, we have µ(T ) ≤ (B+1)/ζ. By Lemma 12, and α = B · (1− �/2) we
have a S = {S1, . . . , Sk}, a feasible tree decomposition and k ≤ 
 2µ(T )α−β � ≤
4·(B+1)

�·ζ .
Therefore, by choosing a uniform subtree S∗ out of the k subtrees, the probability that
a vertex v ∈ T would be successfully added to the strategy is:

Pr[v ∈ S∗] ·Pr[C(S∗) ≤ B] ≥ 1
k
· (1− α

B ) ≥
� · ζ
4 · (B + 1) ·

�

2
= ζ · �2

8 · (B + 1) .

By summing over all the vertices, we find that the non-adaptive gain is at least ζ ·R(T ) ·
�2/(8 · (B + 1)), while the gain of the optimal adaptive policy is at most 2 · ζ · R(T ).

6 Examples

In this section, we provide several of examples that demonstrate various tree graph
instances’ properties. LetBe(s, p) denote a Bernoulli distribution, i.e., for a randomized
variable x ∼ Be(s, p), then x = s has a probability p, and x = 0 otherwise. Let 1+

denote a large constant, i.e., 1+ � B. Note that, for e ∼ Be(1+, p), µB(e) = p · B.
First, for completeness, we state again the example in [4], which demonstrates that

any competitive non-adaptive strategy must use budget augmentation even in spider
graphs (Fig. 3).

Example 14. A spider graph with L legs, each leg i contains two vertices, vi,1, and
vi,2, R(vi,1) = 0 and R(vi,2) = 1 for all i ∈ [L], π(vi,1) ∼ Be(2−i, 1 − 1L), and
π(vi,2) = (1− 2−i + 2−L, 1).

Claim (Lemma 1 in [4]). The adaptivity gap of stochastic graph exploration is Ω(n)
(without budget augmentation) even in spider graphs.

Proof. Consider the spider graph in Example 14. Note that, for any i 	= j ∈ [L], we
have, C({vi,2, vj,2}) > 1 with probability 1; therefore, any strategy would gain at most
1. Given a list strategy, let vi,2 be the first second-level vertex in the list, the probability
that this list strategy will gain is at most Pr[C({vi,1, vi,2} ≤ 1] = 1L ; therefore, the
expected gain of any non-adaptive strategy is at most 1/L.

On the other hand, an adaptive strategy probes vi,1 sequentially from L to 1 until
C(vi,1) = 0 for some i ∈ [L], and if such i exists, it probes vi,2 and halts. Note that,
in the case that such i exists, this strategy successfully probes vi,2 (with probability
1). Therefore, the expected gain of this strategy is (1 − 1/L)L ≈ 0.36 and the gap is
unbounded.
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Fig. 3. Instance of spider graph demonstrating that the budget augmentation is necessary, see
Example 14.

The next example demonstrates that even with budget augmentation, a set strategy
is not competitive versus an adaptive strategy.

Fig. 4. An example demonstrating that a set strategy cannot approximate an adaptive strategy
even with budget augmentation.

Example 15. A spider graph with 1 legs, the leg contains k vertices, v1,j for j ∈ [k].
R(v1,k) = 2k, and π(vi,1) ∼ Be(1+, 1/2). See also Fig. 4.

Claim. The gap between a set strategy and an adaptive strategy is unbounded, even
when the set strategy uses a constant budget augmentation.

Proof. Consider the graph in Example 15. The probability that a list strategy which
probes the single leg will successfully probe vertex vi,h is 2−h; therefore its expected
gain is

�k
h=1 2
−h ·2h = k. While a set strategy which contains vertices with a prefix of

v1,j for j ∈ [k] would gain
�j

h=1 2
h ≤ 2j+1 and the probability it gains is 2−j , there

it’s expected gain is at most 2j+1 · 2−j = 2 and the gap is unbounded.

Example 16. A spider graph with 1 legs, the leg contains 2 vertices, v1,1 for and v1,2.
R(v1,1) = 0,R(v1,2) = 1, π(v1,1) ∼ Be(1+, 1− 1/k), π(v1,2) ∼ Be(0, 1). The value
of Φ̂I,1(1) = 1, while the value of any adaptive policy (even with budget augmentation)
is at most 1/k.
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Fig. 5. An example demonstrates that for general instances, there is a non-constant gap between
the value of the solution of ΦI and the gain of an adaptive strategy, even with a constant budget
augmentation.
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Fig. 6. An instance where Φ̂I has an unbounded weight support tree.

Next, we demonstrate that for general instances, we cannot use the value of the solu-
tion of ΦI for the lower bound of an adaptive strategy, even with budget augmentation.

Example 17. Consider a graph with 2 · k vertices, v1 = r, vi, ui for i ∈ [k],
Parent(vi) = vi−1), Parent(ui) = vi, and R(ui) = ki−1,R(vi) = 0, π(vi) ∼
Be(1+, 1− 1/k), π(ui) ∼ Be(1, 1). See Fig. 5

Claim. There exists an instance I, such that the gap between ΦI,B(2) and the value of
any adaptive policy on I is unbounded, even with budget augmentation.

Proof. Consider the instance of Example 17; first note that for i ∈ [k], xvi = k−i+1/2
and yui = xui = k−i/2 is a feasible solution and its value is

�k
i=1 yui · ki−1 =�k

i=1 k
−i/2 · ki−1 = k/2. Considering an adaptive strategy with budget B, we can

assume w.l.o.g that it is deterministic, since the only random variables are C(vi), and
if C(vi) 	= 0, the algorithm must halt. Let h1, . . . , hB, where the algorithm decides to
probe uhi

for i ∈ B (clearly there must be at most B since the cost of any of them
is deterministically 1 ). The probability it gains, uhj

, is at most kj , and therefore it’s

expected gain is at most
�B

j=1 k
−j · kj = B, while as we have shown ΦI,B ≥ ΦI,1 =

k/2.
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Example 18. Consider a graph with k+1 vertices, r, v, ui for i ∈ [k−1], Parent(v) =
r, Parent(ui) = v, and R(ui) = 1,R(v) = 0, π(vi) ∼ Be(0.5, 1), π(ui) ∼ Be(1, 1).
See Fig. 6. The optimal solution for Φ̂I(2) will set xv = xui
= 4/k, and therefore

µ(T ) = (k − 1)/2.
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