
Information Processing Letters 180 (2023) 106334

Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

The loss of serving in the dark ✩

Yossi Azar a,1, Ilan Reuven Cohen b,∗,2, Iftah Gamzu c,3

a Blavatnik School of Computer Science, Tel-Aviv University, Israel
b Faculty of Engineering, Bar-Ilan University, Israel
c Amazon, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 February 2022
Received in revised form 21 July 2022
Accepted 3 October 2022
Available online 14 October 2022
Communicated by Ranko Lazic

Keywords:
Oblivious algorithms
Randomized algorithms
Online algorithms
Scheduling
Prompt mechanisms

We study the following balls and bins stochastic process: There is a buffer with B bins, 
and there is a stream of balls X = 〈X1, X2, . . . , XT 〉 such that Xi is the number of balls 
that arrive before time i but after time i − 1. Once a ball arrives, it is stored in one of 
the unoccupied bins. If all the bins are occupied then the ball is thrown away. In each time 
step, we select a bin uniformly at random, clear it, and gain its content. Once the stream of 
balls ends, all the remaining balls in the buffer are cleared and added to our gain. We are 
interested in analyzing the expected gain of this randomized process with respect to that 
of an optimal gain-maximizing strategy, which gets the same online stream of balls, and 
clears a ball from a bin, if exists, at any step. We name this gain ratio the loss of serving 
in the dark.
In this paper, we determine the exact loss of serving in the dark. We prove that the 
expected gain of the randomized process is worse by a factor of ρ + ε from that of the 
optimal gain-maximizing strategy where ε = O (1/B1/3) and ρ = maxα>1 αeα/((α − 1)eα +
e − 1) ≈ 1.69996. We also demonstrate that this bound is essentially tight as there are 
specific ball streams for which the above-mentioned gain ratio tends to ρ . Our stochastic 
process occurs naturally in packets scheduling and mechanisms design applications.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Consider the fundamental packets scheduling scenario 
in which there is an online stream of packets with arbi-
trary values arriving to a network device that can accom-

✩ An extended abstract of this work appears in the proceedings of 
STOC2013 [6].
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modate B packets. The device can transmit one packet in 
each time-step, and several packets may arrive between 
the transmission time-steps. The goal is to maximize the 
overall value of transmitted packets. A trivial greedy al-
gorithm for this scenario keeps the B packets with the 
highest values, i.e., in the arrival of a new packet when 
the buffer is full, it discards the lowest valued packet 
among the new packet and the buffer’s packets, and in a 
transmission time-step, it transmits the packet with the 
highest value in the buffer. It is easy to verify that the 
greedy algorithm is optimal. However, it inspects the val-
ues of the packets prior to their transmission. We are in-
terested in algorithms whose transmission decisions are 
value-oblivious. Such algorithms have the property that if 
one focuses on any single packet then for all possible 
values it is either transmitted in the same time-step or 
rejected. Value-oblivious transmission algorithms are ben-
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eficial in game-theoretic settings that require fairness in 
the following informal sense: one would not like a high 
value packet to have a higher priority in transmission com-
pared to a low value packet if both packets are to be 
transmitted. This fairness property is necessary for the de-
sign of prompt mechanisms, where a packet should learn 
its payment immediately upon its transmission. We note 
that value-oblivious transmission algorithms may inspect 
the values of packets on their arrival. Therefore, one can 
assume without loss of generality that any value-oblivious 
transmission algorithm keeps the B packets with the high-
est values at any point in time. One example of a value-
oblivious transmission algorithm is the FIFO algorithm, 
which keeps the highest value packets and transmits the 
earliest packet in the buffer. The algorithm is known to 
be 2 competitive and this bound is tight for this algo-
rithm [22]. A natural question is whether one can design a 
value-oblivious transmission algorithm with a better com-
petitive ratio, and we answer this question affirmatively.

We consider a simple randomized algorithm that trans-
mits a packet from the buffer uniformly at random. The 
core of analyzing this algorithm can be reduced using the 
zero-one principle [7], to the following natural balls and 
bins stochastic process: There is a buffer with B bins, and 
there is a stream of balls X = 〈X1, X2, . . . , XT 〉 such that 
Xi is the number of balls that arrive before time i but af-
ter time i − 1. Once a ball arrives, it is stored in one of 
the unoccupied bins, i.e., a bin that does not hold a ball. If 
all the bins are occupied then the ball is thrown away. In 
each time step, we select a bin uniformly at random, clear 
it, and gain its content. In particular, if that bin is occupied 
with a ball then our gain is one; otherwise, our gain is 
zero. Once the stream of balls ends, all the remaining balls 
in the buffer are cleared and added to our gain. We are in-
terested in analyzing the expected gain of this randomized 
process with respect to that of an optimal gain-maximizing 
strategy, which gets the same online stream of balls, and 
clears a ball from a bin, if exists, at any step. We name 
this gain ratio the loss of serving in the dark since the bins 
are selected without knowledge about their content.

1.1. Our results

Determining the exact loss of serving in the dark. We 
prove that the expected gain of the randomized process is 
worse by a factor of ρ + ε from that of the optimal gain-
maximizing strategy where ε = O (1/B1/3), and ρ is defined 
by the following algebraic expression:

ρ = max
α>1

αeα

(α − 1)eα + e − 1
≈ 1.69996

We also demonstrate that this bound is essentially tight 
as there are specific ball streams for which the above-
mentioned gain ratio tends to ρ . As a corollary, we attain 
that the asymptotic loss of serving in the dark is exactly ρ . 
These findings are presented in Section 2.

Application 1: Packets Scheduling. The stochastic process 
occurs naturally in many applications. As described be-
fore, one such example is value-oblivious transmission al-
gorithm. The above result implies that the random trans-
mission algorithm has a competitive ratio of ρ + ε . Note 
2

that in the randomized algorithm, a packet might remain 
in the buffer for a long time. Nevertheless, one can easily 
validate that with high probability, the delay of a packet is 
at most logarithmic factor more than its delay in the FIFO 
algorithm. Thus, one can reject a packet after it stayed in 
the buffer for O (B log B) steps without degrading the com-
petitive ratio.

Application 2: Prompt mechanisms for bounded capac-
ity auctions. We use the stochastic process to establish 
a natural randomized selection mechanism for bounded 
capacity auctions. A bounded capacity auction is a single-
item periodic auction for bidders that arrive online, and 
the number of participating bidders is bounded, e.g., when 
the auction room has a limited size. We show that the 
random selection mechanism is truthful, supports prompt 
payments (see the definition of prompt payments in [13]), 
and achieves an expected competitive ratio of ρ + ε . This 
finding surpasses the 2-competitive FIFO algorithm.

1.2. Our approach and techniques

An essential component in our approach is to utilize a 
deterministic fractional process, designed in a natural way 
to correspond to the randomized process, as a proxy for 
the analysis of the loss of serving in the dark. As we do 
not know how to analyze the loss of serving in the dark 
directly, we make the following two steps which are com-
bined to yield the desired result:

(1) Analyzing the fractional process against the optimal one
– We characterize the ball stream with the worst gain ra-
tio between the fractional process and the optimal one. 
This characterization defines the stream uniquely, i.e., de-
pending only on its length, and reduces the problem of 
finding the worst gain ratio between the two previously-
mentioned processes to that of analyzing a specific alge-
braic expression, which was previously identified with ρ .

(2) Analyzing the randomized process against the fractional 
one – Ideally, we would have liked to show that the ex-
pected gain of the randomized process and the gain of the 
fractional one are essentially equal. Kurtz’s theorem [25]
informally says that the solutions of a stochastic process 
behave similar to the solutions to the differential equation 
of its fractional counterpart (see, e.g., [21]). Unfortunately, 
we cannot apply this theorem in our setting due to the 
hard constraint on the number of bins that induces over-
flows, i.e., some balls need to be rejected if there are more 
balls than bins. Specifically, one can demonstrate that there 
is a drift between the randomized and fractional processes. 
Nevertheless, we are able to bound their gain difference by 
bounding the drift in their loads. This is achieved by ap-
plying Azuma’s inequality to a martingale process defined 
with respect to the two previously-mentioned processes.

1.3. Related work

A classical and well-known balls and bins scenario is 
when B balls are placed into B bins, where the optimiza-
tion criteria is the fraction of full bins, namely, bins that 
got at least one ball. A simple result demonstrates that if 
the balls are placed independently and uniformly at ran-
dom then the expected fraction of full bins is 1 − 1/e. This 
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result has a similar flavor to our result in the sense that 
if this process could have been done in the light, i.e., one 
could deterministically place each ball in any bin, then the 
fraction of full bins would have been 1; however, since 
this process is done in the dark, i.e., the balls are placed 
in a random way, then there is a loss of gain. There are 
other randomized ball and bins stochastic processes that 
have been analyzed using various techniques such as mar-
tingales and Azuma’s inequality. Due to the ever-growing 
line of work in this context, it is beyond the scope of this 
writing to do justice and present an exhaustive survey of 
previous work. We refer the reader to directly related pa-
pers [20,24,29,5,2,30,31,14] and to the references therein 
for a more comprehensive review of the literature.

Various problems are related to prompt mechanisms for 
bounded capacity auctions. A closely related one is the 
dynamic auction with expiring items problem. Hajiaghayi 
et al. [19] introduced the problem and proposed a 2-
competitive truthful mechanism for it, and Cole et al. [13]
presented a 2-competitive truthful mechanism which is 
also prompt, see also [4,9,11,16,18,28,26] for other variants 
and results. Numerous papers deal with different aspects 
of packets scheduling, see [1,3,8,10,12,15,17,22,23,27,33]
for a more comprehensive review.

2. The stochastic process and its analysis

In this section, we prove the next theorem that deter-
mines the loss of serving in the dark.

Theorem 2.1. The expected gain of the randomized process is 
worse by a factor of ρ + ε from that of the optimal gain-
maximizing strategy for ε = O (1/B1/3).

We also show that the above gain ratio is essentially 
tight, resulting in the following corollary.

Corollary 2.2. The loss of serving in the dark is asymptomati-
cally ρ ≈ 1.69996.

2.1. Notation and terminology

Given a buffer with B bins, and a stream of balls 
X = 〈X1, X2, . . . XT 〉, we use the following notation with 
respect to some strategy ALG for clearing the balls: 
Let GALG

i (X) be the gain of ALG at time i, and let 
LALG

i (X) be the load of the buffer at time i, namely, 
the number of balls in the buffer just before ALG clears 
some bin at time i. Let O ALG

i (X) be the overflow at 
time i, that is, the number of balls thrown away at time 
i. Note that LALG

i (X) = min{LALG
i−1 (X) − GALG

i−1 (X) + Xi, B}
and O ALG

i (X) = max{0, LALG
i−1 (X) − GALG

i−1 (X) + Xi − B}. Let 
GALG(X) = ∑T −1

i=1 GALG
i (X) + LALG

T (X) be the overall gain of 
ALG. By this definition, once the stream ends, all the re-
maining balls in the buffer are cleared and added to the 
gain. Also note that we can alternatively define GALG(X) =∑T

i=1 Xi − ∑T
i=1 O ALG

i (X).
It is easy to see that for the optimal gain-maximizing 

strategy OPT, GOPT
i (X) = 1 iff LOPT

i (X) ≥ 1, and 0 other-
wise. Turning to our randomized process RND, the gain 
3

of RND at step i is a random variable, which depends 
on the current load (which is also a random variable), 
since the RND chooses uniformly at random, we have 
for any specific realization of the random variables before 
step i, GRND

i (X) = 1 w.p. LRND
i (X)/B and otherwise 0. Let 

GRND(X) =E[∑i GRND
i (X) + LRND

T (X)] the expected gain of 
RND on X . With these definitions in mind, our goal is to 
determine the exact loss of serving in the dark defined as 
ρ̂ = supX ρ̂(X) = supX GOPT(X)/GRND(X).

The fractional process. As we do not know how to bound 
ρ̂ directly, we define a deterministic fractional process that 
will be used as a proxy for the analysis. We analyze the 
gain of this fractional process and prove that it is far by a 
factor of ρ from the gain of the optimal gain-maximizing 
strategy. This fractional process is designed in a natural 
way to correspond to the randomized process. Unfortu-
nately, we observe that the gain of this process is not the 
expected gain of the randomized process, but rather dom-
inates it. Nevertheless, we still establish that it is within a 
1 + ε factor away from the expected gain of randomized 
process. Combining these two results together enables us 
to prove the claimed ρ̂ .

The fractional process is defined so that if the buffer is 
loaded with L (fractional) balls, then an L/B fraction of a 
ball is cleared from the buffer. Formally, the gain of the 
fractional process FRC at time i is GFRC

i (X) = LFRC
i (X)/B , 

while its load is LFRC
i (X) = min{β · LFRC

i−1(X) + Xi, B}, where 
β = 1 − 1/B .

2.2. Analysis of the fractional process

First, we observe that FRC and RND are monotone with 
respect to their current load and accumulated gain.

Observation 2.3. If ALG is either FRC or RND and suppose at 
some step of ALG we remove some positive amount of balls from 
its load, and continue the process,

• If we discard the removed balls, then the total gain of ALG
can not increase.

• If we add the removed balls into its gain, then the total gain 
of ALG can not decrease.

Next, we show that it is sufficient to consider valid ball 
streams for which the optimal strategy has no overflow nor 
subflow. An overflow is a situation in which OPT cannot 
store all arriving balls in the buffer and therefore has to 
throw some of them away, while a subflow is a situation in 
which there are no balls in OPT’s buffer to be cleared.

Lemma 2.4. Given any ball stream X there is a valid ball stream 
X ′ , with an equal or smaller number of steps, for which the 
optimal strategy does not have an overflow nor a subflow and 
ρ̂(X ′) ≥ ρ̂(X).

Proof. By removing overflow balls from X for which OPT
overflows, and by removing steps in which OPT does not 
clear a ball would not modify OPT total gain. While by 
Observation 2.3, RND total gain can not increase in this 
modified sequence. �
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The following observation relating to valid ball streams 
will be utilized later.

Observation 2.5. A ball stream X = 〈X1, . . . , XT 〉 is valid if and 
only if 1 ≤

(∑k
i=1 Xi

)
− (k − 1) ≤ B, for any k ∈ {1, . . . , T }. In 

addition, given a valid ball stream X = 〈X1, . . . , XT 〉, the gain 
of the optimal strategy is GOPT(X) = ∑T

i=1 Xi , and its load in 
each step k is LOPT

k (X) =
(∑k

i=1 Xi

)
− (k − 1).

In what follows, in Theorem 2.6, we establish an upper 
bound maxX ρ̂(X) = maxX GOPT(X)/GRND(X) under the as-
sumption that X is valid. By Lemma 2.4, we know that this 
is sufficient to upper bound ρ̂ for such streams.

Theorem 2.6. ρ(X) ≤ ρ for any valid ball stream X.

Consider a bounded length ball stream. It is clear that 
there is a ball stream with the worst gain ratio for this 
length as the number of relevant ball streams is finite. We 
next characterize the bounded length ball stream with the 
worst gain ratio between OPT and FRC. Our characteriza-
tion defines the stream uniquely (i.e., depending only on 
its length). Subsequently, we compute the exact gain ratio 
for this stream. The next lemma identifies an important 
property of the stream under consideration.

Lemma 2.7. Given a valid ball stream X with a maximal gain 
ratio ρ(X), we may assume that if at step i, LFRC

i (X) = B then 
also LOPT

i (X) = B.

Proof. Given a sequence X and step i where FRC is fully 
loaded but OPT is not. As a consequence, we can mod-
ify the stream by shifting balls from the remainder of the 
stream to this step, or by adding balls to this step if the 
remainder of the stream is empty. Since OPT was not full, 
the ball stream stays valid. Furthermore, the gain of OPT
may only increase while the gain of FRC cannot increase 
by Observation 2.3, and hence, the gain ratio may only in-
crease. �
Corollary 2.8. Given a valid ball stream X with a maximal gain 
ratio ρ(X), we may assume that if at step i, LOPT

i (X) < B then 
LFRC

i (X) < B, and thus, O FRC
i (X) = 0.

For the purpose of characterizing the ball stream with 
the worst gain ratio between OPT and FRC, we subse-
quently focus on analyzing valid ball streams that maxi-
mize the number of balls thrown away by FRC, namely, 
the total sum of the overflows. By Corollary 2.8, we know 
that when an overflow of FRC occurs then OPT must be 
full. We define a block as a substream between two con-
secutive occasions where FRC is full. Let block(X, k, d) be 
a block that starts on step k with a length of d. Note that 
replacing one block with another block does not influence 
the load states of FRC before the beginning or after the 
end of the block. Similarly to before, we say that a block 
is valid if OPT does not have an overflow nor a subflow 
in that block. The following observation summarizes the 
properties of a block(X, k, d).
4

Observation 2.9. For a block(X, k, d):

1. LFRC
k (X) = B, LOPT

k (X) = B, LFRC
k+d(X) = B, and LOPT

k+d(X) =
B.

2.
∑k

i=1 Xi = B + (k − 1), and 
∑k+d

i=k+1 Xi = d.

3. LOPT
k+ j(X) = B − j + ∑k+ j

i=k+1 Xi , for 0 ≤ j ≤ d.

Note that the only overflow of FRC in a block may oc-
cur in the last step of the block. Accordingly, and in con-
junction with the definition of the fractional process, we 
observe the following.

Observation 2.10. For a block(X, k, d):

1. LFRC
k+ j(X) = B · β j + ∑ j

i=1 Xk+i · β j−i , for 0 ≤ j < d.

2. O FRC
k+d(X) =

(
B · βd + ∑d

i=1 Xk+i · βd−i
)

− B.

In order to characterize a valid block with a maximum 
overflow of FRC, we first define a forward shift procedure. 
This procedure simply moves a ball inside the block from 
one step to the consecutive step. We next prove that the 
overflow of FRC strictly increases after a forward shift. 
This implies that in a valid block with a maximum over-
flow, one may not apply any forward shift while keep-
ing the block valid. This characterizes the block with the 
maximum overflow uniquely (given its length). Formally, a 
forward shift fs(X, k, j) is defined within a block(X, k, d)

such that 0 < j < d and Xk+ j ≥ 1, and results in a ball 
stream X ′ in which X ′

i = Xi for all i /∈ {k + j, k + j + 1}, 
X ′

k+ j = Xk+ j − 1, and X ′
k+ j+1 = Xk+ j+1 + 1. We say that 

a forward shift is admissible if it keeps the validity of the 
block. The following observation identifies a condition for 
the validity of a block after a forward shift.

Observation 2.11. For 0 < j < d, if LOPT
k+ j(X) ≥ 2 and Xk+ j ≥ 1

then fs(X, k, j) is admissible.

Proof. For X ′ = fs(X, k, j), we have LOPT
k+r(X ′) = LOPT

k+r(X) for 
r 
= j and LOPT

k+ j(X ′) = LOPT
k+ j(X) − 1 ≥ 1. �

Lemma 2.12. Applying a fs(X, k, j) increases the overflow of 
the block(X, k, d) in FRC.

Proof. For 0 < j < d, let X ′ = fs(X, k, j), then by Observa-
tion 2.10(2), we have

O FRC
k+d(X ′) = O FRC

k+d(X) + βd− j−1 − βd− j > O FRC
k+d(X) �

Corollary 2.13. Given a valid ball stream X, if we apply an ad-
missible forward shift within some block of X then we get a valid 
ball stream X ′ for which ρ(X ′) > ρ(X).

As a result of the last lemma, we can now characterize 
the worst valid block in terms of overflow for every block 
length.

Lemma 2.14. Given a valid ball stream X with a maximal gain 
ratio ρ(X) that contains some block(X, k, d) then Xk+ j = 0 for 
j < min{B, d}, Xk+ j = 1 for B ≤ j < d, and Xk+d = min{B, d}.
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Proof. Assume for contradiction that a block with a differ-
ent structure participates in the ball stream with the worst 
gain ratio. Let j be the first index it differs from the pro-
posed structure, we will show that in this case LOPT

k+ j(X) ≥ 2
and Xk+ j ≥ 1, so by Observation 2.11 fs(X, k, j) is ad-
missible and by Corollary 2.13, we get a contradiction. If 
j < min{d, B}, we have Xk+ j ≥ 1, so by Observation 2.9(3), 
LOPT

k+ j(X, k) = B − j + Xk+ j ≥ 2. For B ≤ j < d, we have 
LOPT

k+ j(X, k) = Xk+ j since we assume that j is the first in-
dex that differs from the proposed structure. Therefore 
Xk+ j ≥ 1 since the block is valid, and if Xk+ j 
= 1 then 
LOPT

k+ j(X) = Xk+ j ≥ 2. Finally, Xk+d = min{B, d} since by Ob-

servation 2.9(1), LOPT
k+d(X, k) = B . �

Proof of Theorem 2.6. We first analyze the maximal gain 
ratio for a valid block(X, k, d). Using Lemma 2.14 and 
Observation 2.10(2), one can derive that if d ≤ B then 
O FRC

k+d(X) = B · βd + d − B and if d > B then

O FRC
k+d(X) = B · βd +

(
d−1∑
i=B

βd−i

)
+ B · βd−d − B

= B · βd +
(

d−B∑
i=1

β i

)

= B · βd + β · B ·
(

1 − βd−B
)

,

where the last equality follows from β = 1 − 1/B . Re-
call that the gain of OPT in a valid block of length d
is d. So the worst gain ratio for a valid block(X, k, d) is 
d/(d − O FRC

k+d(X)). If we substitute the formulas above in the 
last expression then the worst gain ratio happens when 
d > B . Specifically, we get by substituting α = d/B that 
d/(d − O FRC

k+d(X)) =
d

d − B · βd − β · B · (1 − βd−B
) =

d/B

d/B − βd − β · (1 − βd−B
) −−−→

B→∞
α

α − e−α − (1 − e1−α)

since βd = (1 − 1/B)B·α → e−α and β · (1 − βd−B) = (1 −
1/B) · (1 − (1 − 1/B)B·(α−1)) → 1 − e1−α . One can ana-
lytically verify that the worst gain ratio is attained for 
α ≈ 1.429, and its value is ρ ≈ 1.69996.

We turn to bound ρ(X) for any valid ball stream X . 
Given a ball stream X , we divide it into three parts: the 
first part consists of all ball arrivals until the first over-
flow of FRC, the second part consists of all the complete 
(valid) blocks defined by FRC, and the last part consists of 
the remainder of the ball stream. Similarly to Lemma 2.14, 
one can demonstrate that to maximize the overflow, if the 
length of the first part of X (until the first overflow) is d′ , 
in each of the first d′ − 1 steps, a single ball arrives, and 
then B balls arrive in step d′ . In particular, the number of 
5

balls that are thrown away in this overflow can be eas-
ily shown to be O FRC

d′ (X) = ∑d′−1
i=1 β i = β · B · (1 − βd′−1). 

Regarding the last part of the stream, we may assume 
that it is empty since we know that FRC has no over-
flows within it, and thus, it does not lose any gain with 
respect to OPT. This implies that after the end of the last 
block, the gain of FRC and OPT is exactly the content of 
their buffer, namely, B balls. To sum up, the gain of FRC
in the first and last parts is d′ − β · B · (1 − βd′−1) + B , 
while the gain of OPT is d′ + B . One can analytically ver-
ify that the worst gain ratio happens when d′ ≈ 1.146B , 
and its value is roughly 1.466. Now, if there are K blocks 
in the ball stream with parameters ki, di to indicate the 
starting index and length of each block i, respectively, then 
we get that GOPT(X) = d′ + B + ∑K

i=1 di and GFRC(X) =
d′ − O FRC

d′ (X) + B + ∑K
i=1

(
di − O FRC

ki+di
(X)

)
we have

GOPT(X)

GFRC(X)
≤ max

i

{
d′ + B

d′ − O FRC
d′ (X) + B

,
di

di − O FRC
ki+di

(X)

}

≤ ρ �
2.3. Analyzing the randomized process against the fractional 
one

Our main tool to compare the randomized process 
against the fractional one is to bound their loads’ differ-
ence. Specifically, we show that if the difference at step 
k is 0, the difference at step k + B is at most ε · B , with 
high probability. We first generalize the definition of a ball 
stream X in which Xi ∈ R+ . For our random process, Xi

indicates that it gets Xi� balls deterministically and an 
additional ball with probability Xi − Xi� = X̄i at step i. 
On the other hand, the fractional process gets exactly Xi

balls. Using this definition, in order to upper bound the 
ratio of FRC(X) and RND(X), it is sufficient to consider 
streams where FRC does not have an overflow. Let X be 
such a stream.

Denote Rk = LRND
k (X) and Fk = LFRC

k (X), O k = O RND
k (X), 

Zk = Rk − Fk . Our goal is to bound Zk w.h.p. By our as-
sumption, Fk+1 = β · Fk + Xk , by linearity of expectation 
E[Rk+1 + O k|Rk] = β · Rk + Xk and,

E[Zk+1 + O k − Zk|Zk]
= β · Rk + Xk − (β · Fk + Xk) − (Rk − Fk)

= − Zk

B
. (1)

Next, we characterize the sequence Zk . Let δZ
k = Zk+1 −

Zk , we observe that δZ
k + O k = Zk+1 + O k − Zk ∈ {a −

1, a, a +1} with probabilities p1, p2, p3, respectively, where 
a = Fk/B − X̄k and p1 = (1 − X̄k) · Rk/B , p3 = X̄k ·(1 − Rk/B)

and p2 = 1 − p1 − p3. And accordingly, δZ
k ∈ {a − 1 −

o1, a − o2, a + 1 − o3} with the same probabilities, where 
oi = max{Rk + Xk� − B + i − 2, 0}. Note that −1 ≤ a ≤ 1
and −1 − o1 ≤ −o2 ≤ 1 − o3. Next, we observe,
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Observation 2.15. For a sequence X where FRC does not over-
flow: If Zk ≥ 2 then Zk+1 ≥ 0. If Zk ≤ −2 then Zk+1 ≤ 0 and 
O k = 0. If −2 ≤ Zk ≤ 2 then −4 ≤ Zk+1 ≤ 4.

Proof. We have, Zk + a + 1 ≥ Zk+1 ≥ Zk + a − 1 − o1. If 
o1 = 0 the observations hold since −1 ≤ a ≤ 1, and if o1 ≥
1, Rk+1 = B and therefore Zk+1 ≥ 0. Finally, for Zk ≤ −2
we have, −2 ≥ Zk ≥ Zk + β · Fk + Xk − B ≥ Zk + Fk − 1 +
Xk − B ≥ Rk +Xk� −1 − B which yields Rk +Xk� ≤ B −1, 
and therefore O k = 0. �

By Equation (1), the absolute value of Zk behaves “al-
most” as a super-martingale (if the sign of Zk+1 is the 
same as Zk and O k = 0). Furthermore, if there is overflow 
in RND, the difference only decreases, and the sign stays 
the same if Zk is larger than a constant (2).

To bound |Zk| formally, we define a martingale Yk
which stochastically dominates Zk . Specifically, we define 
a sequence of pairs (Yk, Zk), where Yk+1 depends only on 
(Yk, Zk), E[Yk+1|(Yk, Zk)] = Yk , and |Yk| ≥ |Zk| −4 for each 
pair. Bounding |Yk| using Azuma’s inequality would bound 
|Zk| as well. We define:

• For Zk ≥ 2, we define δY
k ∈ {a − 1, a, a + 1} with prob-

abilities p1 − x1, p2 − x2, p3 + x3, respectively, where 
0 ≤ x1 ≤ p1, 0 ≤ x2 ≤ p2, x3 = x1 + x2 and E[δY

k ] = 0.4

We couple (δY
k , δZ

k ) such that δY
k ≥ δZ

k (it is possible 
since oi ≥ 0). Set (Yk+1, Zk+1) = (Yk, Zk) + (s · δY

k , δZ
k ), 

where s = 1 if Yk ≥ 0 and −1 otherwise. We have 
|Yk+1| = |Yk + s · δY

k | ≥ |Yk| + δY
k ≥ |Zk| + δZ

k − 4 =
|Zk+1| − 4, where the first inequality is by s definition, 
the second inequality is by our inductive assumption 
and by our coupling, and the last equality is since 
|Zk+1| = Zk+1 by Observation 2.15.

• For Zk ≤ −2, we define δY
k ∈ {a −1, a, a +1} with prob-

abilities p1 + x1, p2 − x2, p3 − x3 respectively, where 
0 ≤ x3 ≤ p3, 0 ≤ x2 ≤ p2, x1 = x3 + x2 and E[δY

k ] = 0.5

We couple (δY
k , δZ

k ) such that δY
k ≤ δZ

k (note that, oi = 0
in this case). Set (Yk+1, Zk+1) = (Yk, Zk) + (s · δY

k , δZ
k ), 

where s = 1 if Yk ≤ 0 and −1 otherwise. And, similarly 
to the first case: |Yk+1| = |Yk + s · δY

k | ≥ |Yk| − δY
k ≥

|Zk| − δZ
k − 4 = |Zk+1| − 4.

• For |Zk| ≤ 2, we set (Yk+1, Zk+1) = (Yk, Zk + δZ
k ) by 

Observation 2.15 |Yk+1| + 4 ≥ 4 ≥ |Zk+1|.

Lemma 2.16. For ε = O (1/B1/3), if Zk = 0 then the probability 
that load difference between FRC and RND at step k + i, for i ≤ B
is at most εB with probability of at least 1 − ε .

Proof. By Azuma’s Inequality, since Yk is a martingale and 
a − 1 ≤ Yk+1 − Yk ≤ a + 1, for (Yk, Zk) = (0, 0) we have for 
t = ε · B:

4 Such values exist since for x1 = x2 = x3 = 0, E[δY
k ] = E[Zk+1 + O k −

Zk|Zk] = −β · Zk ≤ 0, and for x1 = p1, x2 = p2, x3 = p1 + p2, E[δY
k ] =

a + 1 ≥ 0.
5 Such values exist since for x1 = x2 = x3 = 0, E[δY

k ] = E[Zk+1 + O k −
Zk|Zk] = −β · Zk ≥ 0, and for x3 = p3, x2 = p2, x1 = p3 + p2, E[δY

k ] =
a − 1 ≤ 0.
6

P
(|Zk+i(X)| ≥ t

) ≤ P
(|Yk+i(X)| ≥ t − 4

)
≤ 2 · exp

(
−2 · (t − 4)2

22 · k

)

≤ 2 · exp

(
− (t − 4)2

2B

)
≤ ε,

where the first inequality is by the dominance of |Yk| on 
|Xk| − 4, the second inequality is by union bounding the 
positive and negative bound in Azuma’s inequality when 
the difference of each step is bounded by a + 1 − (a − 1) =
2, the last inequality is since B = �(1/ε3). �
Lemma 2.17. For ε = O (1/B1/3), if Zk = 0 then the total ex-
pected gain difference between FRC and RND in the next B steps 
is at most 2ε · B, and the expected absolute load difference be-
tween FRC and RND after the next B steps is at most 2ε · B.

Proof. If Zk = 0 the expected gain of RND, then for i ≤ B

E[GRND
k+i (X)] ≥E

[
GRND

k+i (X)
∣∣ |Zk+i| ≤ εB

] · P [|Zk+i| ≤ εB]
≥E

[
LRND

k+i (X)/B
∣∣ |Zk+i| ≤ εB

] · (1 − ε)

≥ (LFRC
k+i(X)/B − ε) · (1 − ε) ≥ GFRC

k+i(X) − 2ε,

where the first inequality is by the law of total probability, 
the second inequality is by Lemma 2.17, the last inequality 
is since the gain in each step is at most 1. Similarly, we 
bound the expected load difference

E[|LRND
k+B(X) − LFRC

k+B(X)|]
≤E

[
|LRND

k+B(X) − LFRC
k+B(X)|

∣∣∣ |Zi| ≤ εB
]

· P [|Zi| ≤ εB] + B · P [|Zi| > εB]
≤ εB · 1 + B · ε ≤ 2ε · B,

where the first inequality is by the law of total probability 
and since the maximal difference is B , the second inequal-
ity is by Lemma 2.16. �
Lemma 2.18. For ε = O (1/B1/3), and for any sequence X of 
length T : GRND(X) ≥ GFRC(X) − 4ε · T .

Proof. Given a ball stream of length T , partition it to T /B
equal parts of length B . Intuitively, we would like to ap-
ply the above lemma to each of the partition parts and 
attain that the gains of FRC and RND are close to one an-
other. Unfortunately, this is not the case since the loads at 
the beginning of each part may not be the same. We use 
the modifications exhibited in Observation 2.3 to manipu-
late the loads of FRC and RND to be equal after each part. 
We inductively assume that loads of RND and FRC are the 
same at the beginning of a part under consideration. Then, 
we apply Lemma 2.17 that implies that load expected loads 
difference between FRC and RND after B steps is at most 
2ε · B . At the end of each part, we manipulate the pro-
cesses as described in Observation 2.3 by either decreasing 
the load of FRC (to that of RND) or decreasing the load of 
RND (to that of FRC). In any case, this manipulation may 
decrease the gain of FRC by at most 2ε · B in expectation 
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(and would not increase the gain of RND). This enables us 
to apply the inductive step while having an additional gain 
difference loss of at most 2ε · B in each part, in addition, 
by Lemma 2.17 the expected gain loss of RND vs FRC (af-
ter the manipulation) is at most 2ε · B in each part. In 
conclusion, by summing over all the parts, we attain that 
GRND(X) ≥ GFRC(X) − T /B · 4ε · B = GFRC(X) − 4ε · T . �

We are now ready to complete the proof of main theo-
rem of the paper.

Proof of Theorem 2.1. We know from Lemma 2.4 that it is 
sufficient to consider valid ball streams for the purpose of 
bounding ρ̂ = maxX GOPT(X)/GRND(X). Now, let ε′ = ε/20, 
we have

GRND(X) ≥ GFRC(X) − 4ε′ · T ≥ GOPT(X)

ρ
− 4ε′ · GOPT(X)

= GOPT(X)

(
1

ρ
− ε

5

)
where the first inequality is due to Lemma 2.18 with 
ε′ , the second inequality is since by Observation 2.5, we 
have GOPT(X) ≥ T , and the third inequality holds by Theo-

rem 2.6. Hence, ρ̂ ≤ 1
/(

1
ρ − ε

5

)
≤ ρ + ε . �

Finally, we prove that the bound ρ is essentially tight.

Proof of Corollary 2.2. For a large enough B , by consider-
ing a ball stream where the block(X, k, d) with the worst 
gain ratio (as presented in Theorem 2.6, a block with 
d ≈ 1.429B), appears over and over again. It is easy to vali-
date that the gain ratio on this sequence between OPT and 
RND converges to ρ . �
3. Applications

3.1. Application 1: value-oblivious packets scheduling

We show that the competitiveness of value-oblivious 
transmission algorithm, that described in the introduction, 
can be analyzed by the stochastic process described. The 
value-oblivious transmission algorithm selects uniformly at 
random a packet to transmit among the packets in the 
buffer. We compare it to an unconstrained optimal algo-
rithm which transmits the highest valued packet in the 
buffer. We claim that it is sufficient to analyze our random 
transmission algorithm with respect to packets whose val-
ues are restricted to the set {0, 1}. This follows from the 
zero-one principle below, while observing that our algo-
rithm is indeed a comparison-based algorithm. We note 
that an algorithm is comparison-based if all its decisions 
are based on the relative order between the values of the 
bids with no regard to their actual values.

Theorem 3.1. (The zero-one principle [7]) Let A be a (de-
terministic or randomized) comparison-based algorithm. A
is a c-approximation algorithm if and only if A achieves c-
approximation for all input whose values are restricted to {0, 1}
for every possible way of breaking ties between equal values.
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Observe that the expected gain of our algorithm in each 
ransmission is the number of 1-valued packets divided 
y the overall number of packets. Hence, for the sake of 
nalysis, we may assume that there are exactly B pack-
ts in every transmission. Moreover, since our algorithm 
eeps the packets with the highest values at any step, we 
ay assume that the input stream is X = 〈X1, X2, . . . XT 〉, 
here Xi represents the number of 1-valued packets that 

rrived before transmission i but after transmission i − 1. 
ne can easily validate that there is a correspondence be-

ween the competitive ratio of our randomized transmis-
ion algorithm and the loss of serving in the dark ratio. As 
 result, we obtain the following theorem.

heorem 3.2. The competitive ratio of the randomized trans-
ission algorithm is ρ + ε for ε = O (1/B1/3).

.2. Application 2: prompt mechanisms for bounded capacity 
uctions

We consider the problem of developing prompt truth-
l mechanisms for periodic bounded capacity auctions. In the 

nderlying scenario, there is a single item with unlimited 
upply, and a stream of buyers, arriving dynamically over 
ime, each of which is interested in purchasing one in-
tance of the item. An instance of the item is offered for 
ale in a bounded capacity auction periodically, that is, over 
nd over again. A bounded capacity auction is a single-item 
uction in which the number of participating bidders is 
ounded by a fixed B ∈ N+ , e.g., when the auction room 
as a limited size. Since the auction has bounded capac-
y, it is common that the auction cannot accommodate 
ll the buyers. In such a case, some of the buyers must 
e indefinitely rejected. These buyers cannot participate in 
ny auction after their rejection. We remark that the auc-
ion events continue even if the stream of buyers ceases. 
his implies that one can sell items to all pending buyers 
nce the stream ends. Our goal is to design prompt truth-
ul mechanisms that maximizes the social welfare, i.e., the 
um of the values of the buyers that purchase an item. In 
 prompt mechanism [13], a buyer that purchases an item 
arns her payment immediately after she wins the auc-

ion. In the above scenario, the private information of each 
uyer is her positive value for purchasing an item. Each 
uyer declares her bid for purchasing the item once she 
rrives. This model falls within the scope of online single-
arameter setting (see, e.g., [32]). It is well-known that 
eveloping a truthful mechanism in this setting is roughly 
quivalent to designing a monotone algorithm. An algo-
ithm is monotone if a winning buyer, namely, a buyer that 
urchases an item, remains a winner if she raises her bid. 
n algorithm for our problem can be logically split into 

wo parts: (1) Once a buyer arrives, the algorithm needs to 
ecide whether to reject that buyer or to keep her active. 
ote that there must be at most B active buyers at any 

ime, and therefore, it may happen that in order to keep 
 new buyer active, the algorithm has to reject another 
ctive buyer. (2) When an auction occurs, the algorithm 
eeds to decide which of the active bidders wins the item.

One practical motivation for studying the above prob-
m relates to buffer management issues arising in context 
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of network devices such as switches and routers. In this 
application domain, there is an incoming stream of (strate-
gic) packets with intrinsic values, and there is a network 
device that can accommodate a bounded number of pack-
ets at any time. The device can transmit one packet in 
each time-slot. The goal is to design a truthful mechanism 
maximizing the overall value of transmitted packets, while 
charging any packet for the given service once it is trans-
mitted.

We consider the following algorithms:

The Greedy algorithm. The greedy algorithm keeps the 
buyers with highest bids at any step. Specifically, once a 
new buyer arrives, if there are less than B active buyers 
then the new buyer is kept as active; if the bid of the new 
buyer is higher than the minimal bid of the current B ac-
tive buyers then she is kept as active and the active buyer 
with minimal bid is rejected; otherwise, she is rejected. On 
the other hand, when an auction occurs, the item is sold 
to an active buyer with a maximum bid.

One can easily verify that this simple algorithm achieves 
optimal outcome and that it is monotone. Therefore, the 
algorithm can underlie an optimal truthful mechanism. 
However, this algorithm does not support prompt pay-
ments. In particular, there are simple input instances for 
which a buyer may have to wait indefinitely to learn her 
payment.

The FIFO algorithm. This algorithm activates and rejects 
buyers in an identical way to the greedy algorithm, that 
is, it keeps the buyers with highest bids at any step. How-
ever, when an auction occurs, the item is sold to the active 
buyer that arrived earliest. One can easily verify that this 
algorithm is monotone and supports prompt payments. 
Moreover, it is 2-competitive [22].

The randomized selection algorithm. The proposed algo-
rithm activates and rejects buyers in an identical way to 
the greedy algorithm, that is, it keeps the buyers with 
highest bids at any step. When an auction occurs, one 
buyer is selected uniformly at random from all active buy-
ers, and the item is sold to her. We prove that this algo-
rithm is universally truthful (i.e. it is truthful for any possi-
ble coins flip), supports prompt payments, and achieves an 
expected competitive ratio of ρ + ε which is strictly better 
than 2. Recall that ρ ≈ 1.69996.

We begin by proving that the randomized selection al-
gorithm is truthful and supports prompt payments.

Lemma 3.3. The randomized selection mechanism is monotone 
and supports prompt payments.

Proof. Consider two input instances that are identical with 
the exception that in the first instance the bid of buyer i
is v and in the second instance her bid is ṽ , where ṽ ≥ v . 
For the sake of monotonicity, we need to prove that if our 
algorithm selects i as a winner when her bid is v then 
it also selects her as a winner in the latter instance. This 
clearly happens. Specifically, notice that buyer i is kept ac-
tive when she arrives since ṽ ≥ v . Moreover, she cannot be 
rejected by buyers arriving later since she was not rejected 
when her bid was v . This implies that she must win the 
same auction in the latter instance.
8

As for the promptness of the corresponding mechanism, 
observe that the selection of a buyer as a winner only de-
pends on the bids provided by buyers arriving before she 
wins. In particular, a buyer is kept active as long as her bid 
is sufficiently large with respect to the other buyers, and 
the selection of the winner in each auction is determined 
by the random selection process which is independent of 
the bids of the buyers. Thus, we can calculate the pay-
ment of a winning buyer immediately after she wins the 
item. �

By the same arguments described in Section 3.1, the 
competitive ratio of the mechanism is equivalent to the 
loss of serving in the dark ratio presented in Section 2. 
Therefore, we conclude:

Theorem 3.4. The randomized selection mechanism is truthful, 
supports prompt payments and its competitive ratio is ρ + ε for 
ε = O (1/B1/3).
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