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Abstract

We study the following balls and bins stochastic process: There is a buffer with B bins, and there is a
stream of balls X = 〈X1,X2, . . . ,XT 〉 such that Xi is the number of balls that arrive before time i but after
time i− 1. Once a ball arrives, it is stored in one of the unoccupied bins. If all the bins are occupied
then the ball is thrown away. In each time step, we select a bin uniformly at random, clear it, and gain its
content. Once the stream of balls ends, all the remaining balls in the buffer are cleared and added to our
gain. We are interested in analyzing the expected gain of this randomized process with respect to that of
an optimal gain-maximizing strategy, which gets the same online stream of balls, and clears a ball from
a bin, if exists, at any step. We name this gain ratio the loss of serving in the dark.

In this paper, we determine the exact loss of serving in the dark. We prove that the expected gain of
the randomized process is worse by a factor of ρ + ε from that of the optimal gain-maximizing strategy
for any ε > 0, where ρ = maxα>1 αeα/((α − 1)eα + e− 1) ≈ 1.69996 and B = Ω(1/ε3). We also
demonstrate that this bound is essentially tight as there are specific ball streams for which the above-
mentioned gain ratio tends to ρ . Our stochastic process occurs naturally in many applications. We
present a prompt and truthful mechanism for bounded capacity auctions, and an application relating to
packets scheduling.

1 Introduction

Consider the fundamental packets scheduling scenario in which there is an online stream of packets with
arbitrary values arriving to a network device that can accommodate B packets. The device can transmit one
packet in each time-step. The goal is to maximize the overall value of transmitted packets. A trivial greedy
algorithm for this scenario keeps the B packets with the highest values at any point in time, and transmits
the packet with the highest value when possible. This algorithm is optimal. However, it inspects the values
of the packets prior to their transmission. We are interested in algorithms whose transmission decisions
are value-oblivious. Such algorithms have the property that if one focuses on any single packet then for
all possible values it is either transmitted in the same time-step or rejected. Value-oblivious algorithms
are beneficial in game-theoretic settings and when fairness is required (for example in prompt mechanism).
Informally, one would not like a high value packet to have a higher priority in transmission compared to a
low value packet if both packets are to be transmitted. We note that value-oblivious algorithms may inspect
the values of packets on their arrival. Therefore, one can assume without loss of generality that any value-
oblivious algorithm keeps the B packets with the highest values at any point in time. One example of a
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value-oblivious algorithm is the FIFO algorithm, which transmits the earliest packet in the buffer. This
algorithm is known to be 2-competitive against the absolute optimum [24]. A natural question is whether
one can design a value-oblivious algorithm with a better competitive ratio.

We consider a simple randomized algorithm that transmits a packet from the buffer uniformly at random.
The core of analyzing this algorithm can be reduced using the zero-one principle [6], that is described later,
to the following natural balls and bins stochastic process: There is a buffer with B bins, and there is a stream
of balls X = 〈X1,X2, . . . ,XT 〉 such that Xi is the number of balls that arrive before time i but after time i−1.
Once a ball arrives, it is stored in one of the unoccupied bins, i.e., a bin that does not hold a ball. If all the
bins are occupied then the ball is thrown away. In each time step, we select a bin uniformly at random, clear
it, and gain its content. In particular, if that bin is occupied with a ball then our gain is one; otherwise, our
gain is zero. Once the stream of balls ends, all the remaining balls in the buffer are cleared and added to
our gain. We are interested in analyzing the expected gain of this randomized process with respect to that
of an optimal gain-maximizing strategy, which gets the same online stream of balls, and clears a ball from a
bin, if exists, at any step. We name this gain ratio the loss of serving in the dark since the bins are selected
without knowledge about their content.

1.1 Our results

Determining the exact loss of serving in the dark. We prove that the expected gain of the randomized
process is worse by a factor of ρ +ε from that of the optimal gain-maximizing strategy for any ε > 0, where
ρ is defined by the following algebraic expression

ρ = max
α>1

αeα

(α−1)eα + e−1
≈ 1.69996

and B = Ω(1/ε3). We also demonstrate that this bound is essentially tight as there are specific ball streams
for which the above-mentioned gain ratio tends to ρ . As a corollary, we attain that the asymptotic loss of
serving in the dark is exactly ρ . These findings are presented in Section 2.
Application 1: Value-oblivious packets scheduling. The stochastic process occurs naturally in many
applications. As described before, one such example is value-oblivious packets scheduling. The above
result implies that the random transmission algorithm has a competitive ratio of ρ + ε . Note that in the
randomized algorithm, a packet might remain in the buffer for a long time. Nevertheless, one can easily
validate that with high probability, the delay of a packet is at most logarithmic more than its delay in the
FIFO algorithm. Furthermore, one can reject a packet after it stayed in the buffer for O(B logB) steps without
degrading the competitive ratio. For further details see Appendix 3.1.
Application 2: Prompt mechanisms for bounded capacity auctions. We use the stochastic process to
establish a natural randomized selection mechanism for the bounded capacity auctions. A bounded capacity
auction is a single-item periodic auction for bidders that arrive online, and the number of participating
bidders is bounded , e.g., when the auction room has a limited size. We show that the random selection
mechanism is truthful, support prompt payments and achieves an expected competitive ratio of ρ + ε . This
finding surpasses a 2-competitive algorithm for the problem. Detailed description on the bounded capacity
auction, truthful and prompt mechanisms, and related work described in Appendix 3.2.

1.2 Our approach and techniques

An essential component in our approach is to utilize a deterministic fractional process, designed in a natural
way to correspond to the randomized process, as a proxy for the analysis of the loss of serving in the dark.
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As we do not know how to analyze the loss of serving in the dark directly, we make the following two steps
which combine together to yield the desired result:

(1) Analyzing the fractional process against the optimal one – We characterize the ball stream with
the worst gain ratio between the fractional process and the optimal one. This characterization defines the
stream uniquely (i.e., depending only on its length), and reduces the problem of finding the worst gain ratio
between the two previously-mentioned processes to that of analyzing a specific algebraic expression, which
was previously identified with ρ .

(2) Analyzing the randomized process against the fractional one – Ideally, we would have liked to show
that the expected gain of the randomized process and the gain of the fractional one are essentially equal.
Kurtz’s theorem [27] informally says that the solutions of a stochastic process behave similar to the solutions
to the differential equation of its fractional counterpart (see, e.g., [23]). Unfortunately, we cannot apply this
theorem in our setting due to the hard constraint on number of bins that induces overflows. Specifically, one
can demonstrate that there is a drift between the randomized and fractional processes. We define a modified
fractional process that enables us to bound this ε-drift. We then bound the gain difference between our
randomized process and the modified fractional process. This is achieved by applying Azuma’s inequality
to a super-martingale process defined with respect to the two previously-mentioned processes.

1.3 Related work

A classical and well-known balls and bins scenario is when B balls are placed into B bins, where the opti-
mization criteria is the fraction of full bins, namely, bins that got at least one ball. A simple result demon-
strates that if the balls are placed independently and uniformly at random then the expected fraction of full
bins is 1−1/e. This result has a similar flavor to our result in the sense that if this process could have been
done in the light, i.e., one could deterministically place each ball in any bin, then the fraction of full bins
would have been 1; however, since this process is done in the dark, i.e., the balls are placed in a random
way, then there is a loss of gain.

There are other randomized ball and bins stochastic processes that have been analyzed using various
techniques such as martingales and Azuma’s inequality. Due to the ever-growing line of work in this context,
it is beyond the scope of this writing to do justice and present an exhaustive survey of previous work. We
refer the reader to directly related papers [22, 26, 31, 5, 2, 32, 33, 16] and to the references therein for a
more comprehensive review of the literature.

2 The Stochastic Process and its Analysis

In this section, we prove the next theorem that determines the loss of serving in the dark.

Theorem 2.1. The expected gain of the randomized process is worse by a factor of ρ + ε from that of the
optimal gain-maximizing strategy for B = Ω(1/ε3).

We also show that the above gain ratio is essentially tight, resulting in the following corollary.

Corollary 2.2. The loss of serving in the dark is asymptomatically ρ ≈ 1.69996.

Note that all proofs omitted from the main part of the paper can be found in the full paper.
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2.1 Notation and terminology

Given a buffer with B bins, and a stream of balls X = 〈X1,X2, . . .XT 〉, we use the following notation with
respect to some strategy ALG for clearing the balls:

• Let GALG
i (X) be the gain of ALG at time i, and let LALG

i (X) be the load of the buffer at time i,
namely, the number of balls in the buffer just before ALG clears some bin at time i. Notice that
LALG

i (X) = min{LALG
i−1 (X)−GALG

i−1 (X)+Xi,B}.

• Let OALG
i (X) be the overflow at time i, that is, the number of balls thrown away at time i. Specifically,

OALG
i (X) = max{0,LALG

i−1 (X)−GALG
i−1 (X)+Xi−B}.

• Let GALG(X) = ∑
T−1
i=1 GALG

i (X)+LALG
T (X) be the overall gain of ALG. In particular, notice that once

the stream ends, all the remaining balls in the buffer are cleared and added to the gain. Also note that
we can alternatively define
GALG(X) = ∑

T
i=1 Xi−∑

T
i=1 OALG

i (X).

It is easy to see that for the optimal gain-maximizing strategy OPT,

GOPT
i (X) =

{
1 if LOPT

i (X)> 0,
0 otherwise.

Turning to our randomized process RND, we denote by Y = 〈Y1, . . . ,YT 〉 the random choices that the process
takes during the T time steps. Specifically, Yi ∈ {1, . . . ,B} denotes the bin that is uniformly selected at time
i. Now, the gain of RND at step i (conditioned on Y ) is

GRND
i (X |Y ) =

{
1 if Yi ≤ LRND

i (X |Y ),
0 otherwise.

Here and later, we assume without loss of generality that if the buffer is loaded with L balls then all these
balls reside in bins 1, . . . ,L. Similarly to before, the overall gain of the randomized process (conditioned on
Y ) is GRND(X |Y ) = ∑

T−1
i=1 GRND

i (X |Y )+LRND
T (X |Y ), and GRND(X) is the expected value of GRND(X |Y ) over

all possible choices of Y . With these definitions in mind, our goal is to determine the exact loss of serving
in the dark defined as

ρ̂ = max
X

ρ̂(X) = max
X

GOPT(X)

GRND(X)
.

2.2 Valid ball streams

We begin by showing that it is sufficient to consider valid ball streams for which the optimal strategy has no
overflow nor subflow. An overflow is a situation in which OPT cannot store all arriving balls in the buffer
and therefore has to throw some of them away, while a subflow is a situation in which there are no balls in
OPT’s buffer to be cleared.

Lemma 2.3. Given any ball stream X = 〈X1, . . . ,XT 〉 there is a valid ball stream X ′= 〈X ′1, . . . ,X ′T ′〉 for which
the optimal strategy does not have an overflow nor a subflow and ρ̂(X ′)≥ ρ̂(X).

Proof. We first prove that given a ball stream X there is a ball stream X ′ for which OPT does not have a
subflow and ρ̂(X ′) ≥ ρ̂(X). Suppose X has a subflow; otherwise, taking X ′ = X is sufficient. Let i be the
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index of a subflow, namely, LOPT
i (X)= 0 and Xi = 0. We focus on the ball stream 〈X1, . . . ,Xi−1,Xi+1, . . . ,XT 〉.

Clearly, OPT has the same gain for this stream. On the other hand, RND has at most the same expected
gain. Specifically, consider any 〈Y1, . . . ,YT 〉. If Yi > LRND

i (X |Y ) then nothing has changed since RND did
not clear a ball given X . If Yi ≤ LRND

i (X |Y ), namely, RND cleared a ball and the buffer load decreased by
one, then there are two possible scenarios with respect to the modified ball stream: (1) the rest of the gain
series along the time is the same, and thus, the total gain decreased by one. (2) the gain at some future step
increased by one, but then, the state of the randomized process is identical to its state when applied to X ,
and hence, the gain series continues identically and the total gain is identical. In any case, the total gain of
RND may not increase as a result of the stream modification. By applying this modification step repeatedly,
we can obtain a ball stream X ′ for which OPT does not have a subflow, and ρ̂(X ′)≥ ρ̂(X).

We turn to consider the case that OPT has overflows given X . By the previous argument, we may assume
that OPT does not have subflows. Since OPT does not have any subflows then each GOPT

i (X) = 1. Therefore,
GOPT

i (X)≥GRND
i (X |Y ), for any Y = 〈Y1, . . . ,YT 〉 and i. This implies that each LOPT

i (X)≤ LRND
i (X |Y ), which

in turn suggests that if OPT has an overflow then also RND has an overflow. As a result, given the modified
stream 〈X1, . . . ,Xi−1,Xi− 1,Xi+1, . . . ,XT 〉, the gain of both OPT and RND does not change. Applying this
modification step repeatedly, we can obtain a ball stream X ′ for which OPT does not have an overflow (nor
a subflow) and ρ̂(X ′)≥ ρ̂(X).

The following two simple observations relating to valid ball streams will be utilized later.

Observation 2.4. A ball stream X = 〈X1, . . . ,XT 〉 is valid if and only if 0 < ∑
k
i=1 Xi− (k− 1) ≤ B, for any

k ∈ {1, . . . ,T}.

Observation 2.5. Given a valid ball stream X = 〈X1, . . . ,XT 〉, the gain of the optimal strategy is GOPT(X) =

∑
T
i=1 Xi, and its load in each step k is LOPT

k (X) = ∑
k
i=1 Xi− (k−1).

In what follows, we focus on upper bounding maxX ρ̂(X) = maxX GOPT(X)/GRND(X) under the assump-
tion that X is valid. By Lemma 2.3, we know that this is sufficient to upper bound ρ̂ . We do not know how to
do it directly, and therefore, we define a deterministic fractional process that will be used as a proxy for the
analysis. We analyze the gain of this fractional process and prove that it is far by a factor of ρ from the gain
of the optimal gain-maximizing strategy. This fractional process is designed in a natural way to correspond
to the randomized process. Unfortunately, we observe that the gain of this process is not the expected gain
of the randomized process, but rather dominates it. Nevertheless, we still establish that it is within a 1+ ε

factor away from the expected gain of randomized process. Combining these two results together enables
us to prove the claimed ρ̂ .

2.3 Analyzing the fractional process against the optimal one

The fractional process is defined so it clears a ball-fraction that corresponds to the fraction of balls in
the buffer. For example, if the buffer is loaded with L (fractional) balls then the fractional process clears
an L/B ball-fraction from the buffer. Formally, the gain of the fractional process FRAC at time i is
GFRAC

i (X) = LFRAC
i (X)/B, while its load is LFRAC

i (X) = min{LFRAC
i−1 (X) · (1− 1/B)+Xi,B}. Let ρ(X) =

GOPT(X)/GFRAC(X) denote the gain ratio between OPT and FRAC on X . In the remainder of this subsec-
tion, we establish the following theorem.

Theorem 2.6. ρ(X)≤ ρ for any valid ball stream X.
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Proof. Consider a bounded length ball stream. It is clear that there is a ball stream with worse gain ratio
for this length as the number of relevant ball streams is finite. We next characterize the bounded length ball
stream with the worst gain ratio between OPT and FRAC. Our characterization defines the stream uniquely
(i.e., depending only on its length). Subsequently, we compute the exact gain ratio for this stream. The next
lemma identifies an important property of the stream under consideration.

Lemma 2.7. Given a valid ball stream X with a maximal gain ratio ρ(X), we may assume that if LFRAC
i (X)=

B then also LOPT
i (X) = B.

Corollary 2.8. Given a valid ball stream X with a maximal gain ratio ρ(X), we may assume that if
LOPT

i (X)< B then LFRAC
i (X)< B, and thus, OFRAC

i (X) = 0.

For the purpose of characterizing the ball stream with the worst gain ratio between OPT and FRAC,
we subsequently focus on analyzing valid ball streams that maximize the number of balls thrown away by
FRAC, namely, the total sum of the overflows. By Corollary 2.8, we know that when an overflow of FRAC
occurs then OPT must be full. We define a block as a substream between two consecutive occasions where
FRAC is full. Let block(X ,k,d) be a block that starts on step k with a length of d. Note that replacing one
block with another block does not influence the load states of FRAC before the beginning or after the end of
the block. Similarly to before, we say that a block is valid if OPT does not have an overflow nor a subflow
in that block. The following observation summarizes the properties of a block(X ,k,d).

Observation 2.9. For a block(X ,k,d):

1. LFRAC
k (X) = B, LOPT

k (X) = B,
LFRAC

k+d (X) = B, and LOPT
k+d (X) = B.

2. ∑
k
i=1 Xi = B+(k−1), and

∑
k+d
i=k+1 Xi = d.

3. LOPT
k+ j (X) = B− j+∑

k+ j
i=k+1 Xi,

for 0≤ j ≤ d.

Note that the only overflow of FRAC in a block may occur in the last step of the block. Accordingly, and
in conjunction with the definition of the fractional process, we observe the following.

Observation 2.10. For a block(X ,k,d):

1. LFRAC
k+ j (X) = B · (1−1/B) j +∑

j
i=1 Xk+i · (1−1/B) j−i, for 0≤ j < d.

2. OFRAC
k+d (X) = B · (1−1/B)d +∑

d
i=1 Xk+i · (1−1/B)d−i−B.

In order to characterize a valid block with a maximum overflow of FRAC, we first define a forward shift
procedure. This procedure simply moves a ball inside the block from one step to the consecutive step. We
next prove that the overflow of FRAC strictly increases after a forward shift. This implies that in a valid
block with a maximum overflow, one may not apply any forward shift while keeping the block valid. This
characterizes the block with the maximum overflow uniquely (given its length). Formally, a f shi f t(X ,k, j)
is defined within a block(X ,k,d) such that 0 < j < d and Xk+ j > 0, and results in a ball stream X ′ in which
X ′i = Xi for all i 6= k+ j,k+ j+1, X ′k+ j = Xk+ j−1, and X ′k+ j+1 = Xk+ j+1 +1. We say that a forward shift
is admissible if it keeps the validity of the block. The following observation identifies a condition for the
validity of a block after a forward shift.
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Observation 2.11. Given a valid block(X ,k,d), the block continues to be valid after applying a f shi f t(X ,k, j)
if LOPT

k+ j (X)> 1.

Notice that we do not need to require that LOPT
k+ j+1(X)< B in the above observation. This follows since if

LOPT
k+ j (X)> 1 then LOPT

k+ j+1(X
′) = LOPT

k+ j+1(X).

Lemma 2.12. Applying a f shi f t(X ,k, j) increases the overflow of the block(X ,k,d) in FRAC.

Proof. Using Observation 2.10(2), if we apply a forward shift at step 0 < j < d then

OFRAC
k+d (X ′) =

= OFRAC
k+d (X)+

(
1− 1

B

)d− j−1

−
(

1− 1
B

)d− j

> OFRAC
k+d (X) .

Corollary 2.13. Given a valid ball stream X, if we apply an admissible forward shift within some block of
X then we get a valid ball stream X ′ for which ρ(X ′)> ρ(X).

As a result of the last lemma, we can now characterize the worst valid block in terms of overflow for
every block length.

Lemma 2.14. Given a valid ball stream X with a maximal gain ratio ρ(X) that contains some block(X ,k,d)
then

• if d ≤ B then 〈Xk+1, . . . ,Xk+d〉= 〈0, . . . ,0,d〉, where the number of 0’s is d−1.

• if d >B then 〈Xk+1, . . . ,Xk+d〉= 〈0, . . . ,0,1, . . . ,1,B〉, where the number of 0’s is B−1 and the number
of 1’s is d−B.

Proof. Assume for the purpose of contradiction that a block with different structure participates in the ball
stream with the worst gain ratio. We consider the following two cases, and demonstrate that in each case,
one can modify the ball stream and attain a worse gain ratio.

Case I: d ≤ B. Notice that there exists a j = min{i : 0 < i < d and Xk+i > 0}. By Observation 2.9(3), we
know that LOPT

k+ j (X ,k) = B− j+Xk+ j > 1, and therefore, f shi f t(X ,k, j) is admissible by Observation 2.11.
Together with Corollary 2.13, we get a contradiction.

Case II: d > B. If there is a j = min{i : 0 < i < B and Xk+i > 0} then getting a contradiction is similar to
the previous case. Otherwise, there must be j = min{i : B ≤ i < d and Xk+i > 1}. Notice that ∑

j−1
i=1 Xk+i =

j−B, and thus, LOPT
k+ j (X) =Xk+ j using Observation 2.9(3). This implies that indeed Xk+ j > 1 since otherwise

OPT has a subflow and the ball stream is not valid. Now, using Observation 2.11, a f shi f t(X ,k, j) is
admissible, and then, by Corollary 2.13, we get a contradiction.

We are now ready to complete the proof of Theorem 2.6. We first analyze the maximal gain ratio for a
valid block(X ,k,d). Using Lemma 2.14 and Observation 2.10(2), one can derive that if d ≤ B then

OFRAC
k+d (X) = B ·

(
1− 1

B

)d

+d−B ,
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and if d > B then

OFRAC
k+d (X) =

= B ·
(

1− 1
B

)d

+
d−B

∑
i=1

(
1− 1

B

)i

−B

= B ·
(

1− 1
B

)d

+(
1− 1

B

)
·B ·

(
1−
(

1− 1
B

)d−B
)

.

Recall that the gain of OPT in a valid block of length d is d. So the worst gain ratio for a valid block(X ,k,d)
is d/(d−OFRAC

k+d (X)). If we substitute the formulas above in the last expression then the worst gain ratio
happens when d > B. Specifically, we get that

d
d−OFRAC

k+d (X)
=

d

d−B
(
1− 1

B

)d
+
(
1− 1

B

)
B
(
1−
(
1− 1

B

)d−B )
The last expression tends to

αeα

(α−1)eα + e−1
,

for a sufficiently large B by substituting α = d/B. One can analytically verify that the worst gain ratio is
attained for α ≈ 1.429, and its value is ρ ≈ 1.69996.

We turn to bound ρ(X) for any valid ball stream X . Given a ball stream X , we divide it into three parts:
the first part consists of all ball arrivals until the first overflow of FRAC, the second part consists all the
complete (valid) blocks defined by FRAC, and the last part consists of the remainder of the ball stream.
Similarly to Lemma 2.14, one can demonstrate that the first part of X must have the structure 〈1,1, . . .1,B〉
in order to maximize the number of balls thrown away. In particular, the number of balls that are thrown
away in this overflow can be easily shown to be OFRAC

d′ (X) = ∑
d′−1
i=1 (1− 1/B)i = (1− 1/B) ·B · (1− (1−

1/B)d′−1), where d′ is the length of the first part. Regarding the last part of the stream, we may assume
that it is empty since we know that FRAC has no overflows within it, and thus, it does not lose any gain
with respect to OPT. This implies that after the end of the last block, the gain of FRAC and OPT is exactly
the content of their buffer, namely, B balls. To sum up, the gain of FRAC in the first and last parts is
d′− (1−1/B) ·B · (1− (1−1/B)d′−1)+B, while the gain of OPT is d′+B. One can analytically verify that
the worst gain ratio happens when d′ ≈ 1.146B, and its value is roughly 1.466. Now, if there are K blocks in
the ball stream with parameters ki,di to indicate the starting index and length of each block i, respectively,
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then we get that

GOPT(X) = d′+B+
K

∑
i=1

di ,

GFRAC(X) =

d′−OFRAC
d′ (X)+B+

K

∑
i=1

(
di−OFRAC

ki+di
(X)
)

ρ(X) =
GOPT(X)

GFRAC(X)

≤max
i

{
d′+B

d′−OFRAC
d′ (X)+B

,
di

di−OFRAC
ki+di

(X)

}
≤ ρ .

2.4 Analyzing the randomized process against the fractional one

In what follows, we make a connection between the expected gain of our randomized process and the gain
of the fractional one. For this purpose, we first generalize the definition of a ball stream X from an integer
one, in which Xi ∈ N+, to a fractional one, in which Xi ∈ R+. For our random process, Xi indicates that
it gets bXic balls deterministically and an additional ball with probability Xi− bXic at step i. Note that
the expectation of the number of arriving balls is Xi. On the other hand, a deterministic process (e.g., the
fractional process) gets exactly Xi balls. Clearly, if we bound the worst gain ratio between our randomized
process and the fractional one with respect to such fractional ball streams, it immediately implies the same
bound for integral ball streams.

We begin by defining a modified fractional process. This modified process has a smaller buffer size than
FRAC, but clears the same ball-fraction at each step as FRAC. Specifically, FRAC′ has a buffer with size
of (1− ε)B, where ε ≥ 1/B. The gain of FRAC′ at time i is GFRAC′

i (X) = LFRAC′
i (X)/B, while its load is

LFRAC′
i (X) =min{LFRAC′

i−1 (X) ·(1−1/B)+Xi,(1−ε)B}. We next bound the ratio between the gains of FRAC
and FRAC′. First, we make the following simple monotonicity observation regarding all the processes under
consideration (i.e., OPT, RND, FRAC, and FRAC′).

Observation 2.15. Given two fractional balls streams X and X ′, if X ′i ≤ Xi in any step i then GALG(X ′) ≤
GALG(X), where ALG can be any of the processes under consideration.

Theorem 2.16. GFRAC′(X)≥ (1− ε)GFRAC(X) for any valid ball stream X.

We now turn to bound the difference between the gains of FRAC′ and RND.

Theorem 2.17. For any ball stream X of length T ,
GRND(X)≥ GFRAC′(X)−T ε .

Proof. We first make several observations that will be utilized later.

Observation 2.18. Given a ball stream X, if FRAC′ never has an overflow given X then

LFRAC′
k (X) =

k

∑
i=1

Xi ·
(

1− 1
B

)k−i

.
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Observation 2.19. Consider the following process manipulations:

• Suppose at some step of FRAC′ we remove some positive fraction of balls from its load and add them
to its total gain. If we continue with the process from the resulting state then the total gain of FRAC′

can not decrease (with respect to the process without the modification).

• Suppose that at some step of RND we remove some positive fraction of balls from its load and throw
them away. If we continue with the process then the total gain of RND can not increase (with respect
to the process without the modification).

Using similar reasonings to before, one can demonstrate that it is sufficient to prove this theorem for ball
streams X for which FRAC′ has no overflows; otherwise, we can modify X to X ′ by removing ball-fractions
that correspond to overflows of FRAC′, while making the gain ratio between FRAC′ and RND for X ′ no
better. As a result, we can assume that LFRAC′

k (X) = ∑
k
i=1 Xi · (1− 1/B)k−i by Observation 2.18. Notice

that LRND
k (X) is a random variable, and observe that these loads form a Markov chain. Specifically, the

conditional expectation of the load of RND in any step k+1 depends only on the preceding load LRND
k (X).

Formally,

E
(
LRND

k+1 (X)|LRND
1 (X), . . . ,LRND

k (X)
)
=

E
(
LRND

k+1 (X)|LRND
k (X)

)
.

Lemma 2.20. The conditional expectation of the load satisfies that

E
(
LRND

k+1 (X)|LRND
k (X)

)
≤

min
{

LRND
k (X) ·

(
1− 1

B

)
+Xk+1,B

}
.

We now define a process Zk(X) which is the absolute difference between LRND
k (X) and LFRAC′

k (X).
Specifically, since it is sufficient to consider the case that FRAC′ does not have an overflow on X then
we know by Observation 2.18 that

Zk(X) =
∣∣∣LRND

k (X)−LFRAC′
k (X)

∣∣∣
=

∣∣∣∣∣LRND
k (X)−

k

∑
i=1

Xi ·
(

1− 1
B

)k−i
∣∣∣∣∣ .

We prove that this process is a super-martingale, that is, E[Zk+1(X)|Z1(X), . . . ,Zk(X)]≤ Zk(X). Notice that
E[Zk+1(X)|Z1(X), . . . ,Zk(X)] = E[Zk+1(X)|LRND

k (X)] by the definition of Zk(X) and the property stated in
Equation 1. We consider two cases. The first is when LRND

k (X)+Xk+1 ≤ B, namely, RND surely has no
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overflow at step k+1. Then,

E[Zk+1(X)|LRND
k (X)] =

=

∣∣∣∣∣LRND
k (X)

(
1− 1

B

)
+Xk+1−

k+1

∑
i=1

Xi

(
1− 1

B

)k+1−i
∣∣∣∣∣

=

∣∣∣∣∣LRND
k (X)

(
1− 1

B

)
−

k

∑
i=1

Xi

(
1− 1

B

)k+1−i
∣∣∣∣∣

=

(
1− 1

B

)∣∣∣∣∣LRND
k (X)−

k

∑
i=1

Xi

(
1− 1

B

)k−i
∣∣∣∣∣

=

(
1− 1

B

)
Zk(X)≤ Zk(X) ,

where the first equality follows from Lemma 2.20 and our assumption that LRND
k (X)+Xk+1≤ B. The second

case is when LRND
k (X)+Xk+1 > B. The proof is similar to first case and appears in the full version.

Now, notice that |Zk+1(X)− Zk(X)| ≤ 2. In particular, the difference is bounded by 2 since (1) we
consider fractional ball streams, and hence, the fractional process may get an extra (fraction of a) ball that
the randomized process may not obtain, and (2) each process may clear at most one ball. Accordingly, we
can apply Azuma’s inequality [7] to this super martingale process, namely,

P(Zk+N(X)−Zk(X)≥ t)≤ exp
(
−t2

8N

)
.

Observe that by choosing t = εB, we get that P(Zk+i(X)− Zk(X) ≥ εB) ≤ exp(−ε2B/8) for any i ≤ B.
Using union bound, we conclude that P(∃i≤ B : Zk+n(X)−Zk(X)≥ εB)≤ B ·exp(−ε2B/8). The following
lemma summarizes the consequences of this last finding.

Lemma 2.21. Assume that B = Ω(1/ε3). If Zk(X) = 0 then the maximum load difference between FRAC′

and RND in each of the next B steps is at most εB with high probability. In particular, this implies that RND
has no overflows in those steps with high probability.

We next employ the last lemma to complete the proof of the theorem. Given a ball stream of length T ,
partition it to T/B equal parts of length B. Intuitively, we would like to apply the above lemma to each of
the parts of the partition, and attain that the gain of FRAC′ and RND is close to one another. Specifically,
if we knew that in the beginning of each part the corresponding random variable Zk(X) = 0 then we would
get that the load difference in each part is at most εB with high probability by applying the above lemma.
In particular, this would imply that RND has no overflow in any of the parts with high probability. As a
result, we get that the expected gain of RND is essentially equal to the gain of FRAC′, completing the proof.
Unfortunately, this is not the case since the loads in the beginning of each part may not be the same.

We use the modifications exhibited in Observation 2.19 to manipulate the loads of FRAC′ and RND to
be equal after each part. We inductively assume that in the beginning of a part under consideration the
loads of RND and FRAC′ are the same. Then, we apply Lemma 2.21 that implies that load difference
between FRAC′ and RND in the next B steps is at most εB with high probability. This implies that RND
has no overflow in that part with high probability. At the end of each part, we manipulate the processes as
described in Observation 2.19 by either decreasing the load of FRAC′ (to that of RND) or decreasing the
load of RND (to that of FRAC′). In any case, this manipulation may decrease the gain of RND by at most εB.
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This enables us to apply the inductive step while having an additional gain difference loss of at most εB in
each part. In conclusion, by summing over all the parts, we attain that GRND(X)≥GFRAC′(X)−T/B · εB =
GFRAC′(X)−T ε .

2.5 Putting everything together

We are now ready to complete the proof of main theorem of the paper.

Proof of Theorem 2.1. We know from Lemma 2.3 that it is sufficient to consider valid ball streams X for
the purpose of bounding ρ̂ = maxX GOPT(X)/GRND(X). By Observation 2.4, we know that GOPT(X) ≥ T .
Now, notice that

GRND(X) ≥ GFRAC′(X)−T ε

≥ (1− ε)GFRAC(X)−T ε

≥ (1− ε)
GOPT(X)

ρ
−T ε

≥ (1− ε)
GOPT(X)

ρ
−GOPT(X)ε

≥ GOPT(X)

(
1− ε

ρ
− ε

)
,

where the first inequality is due to Theorem 2.17, the second inequality is by Theorem 2.16, and the third
inequality holds by Theorem 2.6. Hence, ρ̂ ≤ ρ +O(ε).

2.6 Tightness of the analysis

In the previous subsections, we have established that the loss of serving in the dark ρ +ε . A natural question
to ask is whether one can find a better bound for this ratio between the expected gain of the randomized
process and that of the optimal gain-maximizing strategy. It turns out that our analysis is tight up to a
difference of O(ε), i.e., the bound that we have obtained is asymptotically the exact loss of serving in the
dark. This finding can be proved by noticing the following:

(1) The value of the ratio ρ(X) = GOPT(X)/GFRAC(X) presented in Theorem 2.6 is essentially tight. This
can be proved by considering the block(X ,k,d) with worst gain ratio (i.e., a block with d ≈ 1.429B whose
gain ratio is ρ), and creating a ball stream X in which this block appears over and over again. It is easy to
validate that ρ(X) ≥ ρ − ε , where ε depends on the number of blocks and B, as the gain of the processes
under consideration in the non-block parts of the stream is negligible.

(2) The gain of the fractional process GFRAC(X) dominates the expected gain of the randomized process
GRND(X) for the above-mentioned ball stream X . Specifically, one should notice that the gain of the frac-
tional process in each block(X ,k,d) is equal to the expected gain of the randomized process as long as there
are no overflows by any of the processes. The fractional process has an overflow only at the last step of the
block, while it is not hard to validate that the randomized process may have overflows even before that. In
such cases, the gain of the randomized process becomes smaller than that of the fractional one.
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3 Applications:

3.1 Application 1: Value-oblivious
packets scheduling.

We show that the competitiveness of value-oblivious transmission algorithm, that described in the intro-
duction, can be analyzed by the stochastic process described. The value-oblivious transmission algorithm
selects uniformly at random a packet to transmit among the packets in the buffer. We compare it to an
unconstrained optimal algorithm which transmits the highest valued packet in the buffer. We claim that it is
sufficient to analyze our random transmission algorithm with respect to packets whose values are restricted
to the set {0,1}. This follows from the zero-one principle below, while observing that our algorithm is
indeed a comparison-based algorithm. We note that an algorithm is comparison-based if all its decisions are
based on the relative order between the values of the bids with no regard to their actual values.

Theorem 3.1. (The zero-one principle [6]) Let A be a (deterministic or randomized) comparison-based
algorithm for the packet scheduling problem. A is a c-approximation algorithm if and only if A achieves c-
approximation for all packet streams whose values are restricted to {0,1} for every possible way of breaking
ties between equal values.

Observe that the expected gain of our algorithm in each transmission is the number of 1-valued packets
divided by the overall number of packets. Hence, for the sake of analysis, we may assume that there
are exactly B packets in every transmission. Moreover, since our algorithm keeps the packets with the
highest values at any step, we may assume that the input stream is X = 〈X1,X2, . . .XT 〉, where Xi represents
the number of 1-valued packets that arrived before transmission i but after transmission i− 1. One can
easily validate that there is a correspondence between the competitive ratio of our randomized transmission
algorithm and the loss of serving in the dark ratio. As a result, we obtain the following theorem.

Theorem 3.2. The competitive ratio of the randomized transmission algorithm is ρ + ε for B = Ω(1/ε3).

3.2 Application 2: Prompt mechanisms
for bounded capacity auctions

We consider the problem of developing prompt truthful mechanisms for periodic bounded capacity auctions.
In the underlying scenario, there is a single item with unlimited supply, and a stream of buyers, arriving
dynamically over time, each of which is interested in purchasing one instance of the item. An instance
of the item is offered for sale in a bounded capacity auction periodically, that is, over and over again. A
bounded capacity auction is a single-item auction in which the number of participating bidders is bounded
by a fixed B ∈ N+, e.g., when the auction room has a limited size. Since the auction has bounded capacity,
it is common that the auction cannot accommodate all the buyers. In such a case, some of the buyers must
be indefinitely rejected. These buyers cannot participate in any auction after their rejection. We remark that
the auction events continue even if the stream of buyers ceases. This implies that one can sell items to all
pending buyers once the stream ends. Our goal is to design prompt truthful mechanisms that maximizes the
social welfare, i.e., the sum of the values of the buyers that purchase an item. In a prompt mechanism [15],
a buyer that purchases an item learns her payment immediately after she wins the auction.

One practical motivation for studying the above problem relates to buffer management issues arising in
context of network devices such as switches and routers. In this application domain, there is an incoming
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stream of (strategic) packets with intrinsic values, and there is a network device that can accommodate a
bounded number of packets at any time. The device can transmit one packet in each time-slot. The goal
is to design a truthful mechanism maximizing the overall value of transmitted packets, while charging any
packet for the given service once it is transmitted.

In the above scenario, the private information of each buyer is her positive value for purchasing an item.
Each buyer declares her bid for purchasing the item once she arrives. This model falls within the scope of
online single-parameter setting (see, e.g., [35]). It is well-known that developing a truthful mechanism in
this setting is roughly equivalent to designing a monotone algorithm. An algorithm is monotone if a winning
buyer, namely, a buyer that purchases an item, remains a winner if she raises her bid. An algorithm for our
problem can be logically split into two parts: (1) Once a buyer arrives, the algorithm needs to decide whether
to reject that buyer or to keep her active. Note that there must be at most B active buyers at any time, and
therefore, it may happen that in order to keep a new buyer active, the algorithm has to reject another active
buyer. (2) When an auction occurs, the algorithm needs to decide which of the active bidders wins the item.
Example 1: the Greedy algorithm. The greedy algorithm keeps the buyers with highest bids at any step.
Specifically, once a new buyer arrives, if there are less than B active buyers then the new buyer is kept as
active; if the bid of the new buyer is higher than the minimal bid of the current B active buyers then she
is kept as active and the active buyer with minimal bid is rejected; otherwise, she is rejected. On the other
hand, when an auction occurs, the item is sold to an active buyer with a maximum bid.

One can easily verify that this simple algorithm achieves optimal outcome and that it is monotone.
Therefore, the algorithm can underlie an optimal truthful mechanism. However, this algorithm does not
support prompt payments. In particular, there are simple input instances for which a buyer may have to wait
indefinitely to learn her payment.
Example 2: the FIFO algorithm. This algorithm activates and rejects buyers in an identical way to the
greedy algorithm, that is, it keeps the buyers with highest bids at any step. However, when an auction occurs,
the item is sold to the active buyer that arrived earliest.

One can easily verify that this algorithm is monotone. Moreover, it is 2-competitive [24], and supports
prompt payments. Specifically, it is easy to prove that the payment of each winning buyer only depends
on the bids of buyers that arrived before she won. In fact, computing these prices is simple. Essentially,
the price that a winning buyer has to pay is the maximum over all the bids of bidders rejected between the
arrival of that buyer and the time she won the auction.

3.2.1 Our algorithm

We suggest a natural randomized selection algorithm. Our algorithm activates and rejects buyers in an
identical way to the greedy algorithm, that is, it keeps the buyers with highest bids at any step. When
an auction occurs, one buyer is selected uniformly at random from all active buyers, and the item is sold
to her. We prove that this algorithm is universally truthful (i.e. it is truthful for any possible coins flip),
supports prompt payments, and achieves an expected competitive ratio that is strictly better than 2. Recall
that ρ ≈ 1.69996.

Theorem 3.3. The randomized selection algorithm can underlie a prompt truthful mechanism whose com-
petitive ratio is ρ + ε for B = Ω(1/ε3).

As a side note, we remark that one can utilize standard techniques and prove that no prompt determinis-
tic truthful mechanism can attain an optimal outcome for this problem. This implies a separation between
prompt and truthful mechanisms as an optimal truthful mechanism is achievable. To the best of our knowl-
edge, this kind of separation has not been exhibited before.
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3.2.2 Related work

One problem which is closely related to ours is the dynamic auction with expiring items problem. In the
underlying scenario, there is a single item with unlimited supply, and there is a stream of buyers arriving
and departing dynamically over time. An instance of the item is offered for sale in a single-item auction
over and over again. Each buyer is interested in purchasing one instance of the item between her arrival and
departure times. The objective is to design a truthful mechanism that maximizes the social welfare, that is,
the sum of the values of the buyers that purchase an item within their time window. We note that there is
no bound to the number of pending buyers in this model, but rather, each buyer has an individual departure
time.

The dynamic auction with expiring items problem was introduced by Hajiaghayi et al. [21]. They pre-
sented a truthful 2-competitive mechanism (see also [11]). They also established that this algorithm is
best possible. Cole, Dobzinski, and Fleischer [15] concentrated on developing prompt mechanisms for this
problem. They developed a different truthful 2-competitive mechanism which is also prompt. Lavi and
Nisan [28] considered the scenario in which buyers may misreport their arrival and departure times, and
proved that it is impossible to attain bounded competitive ratio in this case. Neglecting all strategic consid-
erations, the dynamic auction with expiring items problem is equivalent to online scheduling of unit-length
jobs on a single machine to maximize weighted throughput. The best known deterministic online algorithm
for this problem has a competitive ratio of about 1.828 [18] (see also [30]), while it is known that no de-
terministic online algorithm can achieve a competitive ratio better than φ ≈ 1.618 [20, 13, 4]. Turning to
the randomized setting, the best online algorithm attains a ratio of e/(e− 1) [9, 12], while no randomized
online algorithm can attain a ratio better than 1.25 [13]. Some additional papers studying this model and
other variants are [3, 8, 24, 1, 25, 29, 36, 17, 14, 19, 10].

3.2.3 Preliminaries

We present the notion of monotonicity and describe a characterization that links monotone algorithms with
truthful mechanisms. Note that the illustrated terms are presented in the context of the problem under
consideration, and thus, the keen reader may refer to [34, 35] for a more comprehensive overview of the
underlying concepts. We later formalize the notion of promptness [15].

Definition 1. An online algorithm A is said to be monotone with respect to the bid of a buyer if it satisfies
the following property: if algorithm A selects a buyer as a winner when her bid is v then it selects that
buyer as a winner when her bid is ṽ, where ṽ≥ v, and the bids of all the other buyers are fixed.

Theorem 3.4. If online algorithm A is monotone with respect to the bid of every buyer then there exists a
corresponding truthful mechanism which can be efficiently computed using algorithm A .

Without delving too deeply into formalities, a mechanism is a pair consisting of an allocation algorithm
and a payments scheme. A mechanism is called truthful if its payments motivate truthful behavior of the
buyers, that is, no buyer has incentive to be dishonest when placing her bid. It is well-known that in a
single-parameter setting, the payments of each winning buyer must be equal to her critical value, namely,
the minimum value she could bid and still win. On the other hand, the payments of all losing buyer are
strictly zero.

Definition 2. An online mechanism is prompt if a buyer that wins an item learns his payment immediately
after winning the item; a mechanism is tardy otherwise.
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Notice that by the discussion above, a mechanism is prompt if and only if the critical value of a winning
buyer can be calculated by the time she wins an item. In particular, the critical value of a winning buyer
should only depend on the bids of the buyers that arrived before she won.

3.2.4 Analysis of the algorithm

We begin by proving that the randomized selection algorithm is truthful and that it supports prompt pay-
ments. Later on, we analyze the competitive ratio of the algorithm.

Lemma 3.5. The randomized selection algorithm is monotone and supports prompt payments.

Proof. Consider two input instances that are identical with the exception that in the first instance the bid of
buyer i is v and in the second instance her bid is ṽ, where ṽ ≥ v. For the sake of monotonicity, we need to
prove that if our algorithm selects i as a winner when her bid is v then it also selects her as a winner in the
latter instance. This clearly happens. Specifically, notice that buyer i is kept active when she arrives since
ṽ≥ v. Moreover, she cannot be rejected by buyers arriving later since she was not rejected when her bid was
v. This implies that she must win the same auction in the latter instance.

As for the promptness of the corresponding mechanism, observe that the selection of a buyer as a winner
only depends on the bids provided by buyers arriving before she wins. In particular, a buyer is kept active as
long as her bid is sufficiently large with respect to the other buyers, and the selection of the winner in each
auction is determined by the random selection process which is independent of the bids of the buyers. Thus,
we can calculate the payment of a winning buyer immediately after she wins the item.

We now turn to analyze the competitive ratio of our algorithm. By the same arguments described in
Section 3.1 this ratio is equivalent to the loss of serving in the dark ratio presented in Section 2. As a result,
we obtain the following lemma:

Theorem 3.6. The competitive ratio of the randomized selection algorithm is ρ + ε for B = Ω(1/ε3).
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