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Abstract. Classification tasks aiming to minimize misclassification costs
that involve allocation of scarce resources are common in many real-world
problems such as allocation of organ transplants to patients, budget
allocations for direct advertising, and classification of machines that need
maintenance when there is a maintenance capacity limit. We propose
a comprehensive analytic framework for scenarios that, in addition to
including multi-class classification problems with misclassification costs,
also have constraints on the number of classified samples of classes due
to resource limitations. To classify samples under the constraints, the
framework uses a probability matrix generated by a trained cost-sensitive
classifier as the input for an optimization model with a minimum cost
objective and resource allocation constraints. To illustrate its effectiveness
and applicability, the framework with a cost-sensitive neural network was
applied in the context of a medical resources allocation case study. The
proposed framework performs significantly better than the alternative
common approach with a cost-insensitive classifier. Our results show
that the proposed framework is capable of providing an effective limited-
resource allocation for misclassification cost problems.

Keywords: misclassification costs · cost-sensitive learning · resource
allocation · optimization model · resource constraints

1 Introduction

In many classification tasks, misclassification costs derived from the consequences
of errors, are involved [4,25,7]. Usually, misclassification errors in these tasks are
asymmetric. In disease severity classification, for example, incorrectly classifying
ill patients as healthy may put these patients at risk of losing their life, much
heavier consequences than classifying healthy patients as ill, which may lead to
unnecessary treatment and waste of medical resources.

⋆ Supported by Intuit Inc.
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In resource allocation problems, classification tasks usually face practical
constraints regarding the number of predicted samples per class, because of
limited resources [13,8,1]. Directly applying the classification model on new
data (test data) that are independent of the training data will not guarantee
compliance with the resource constraint. In the disease severity classification
example, the doctor may have a limited amount of monitoring devices to detect
deterioration of the disease (whether a patient is in early or late stage of the
disease). Ideally, these devices should be allocated such that a high proportion
of patients in the early stages of the disease would be identified. A healthcare
center, however, may prioritize identification of patients who are in a later
stage of the disease using a known high success rate of recovery to benefit
from the efficiency of allocating a limited number of medical resources such as
surgical rooms and teams. These types of applications usually assume a multi-
class classification problem in which the target exhibits an ordering form, as in
the example of disease severity classification task. When there is no accurate
information about the misclassification costs’ values, the distance between real
and predicted classes, assuming ordering information between classes, can be
used to reflect the misclassification errors [10,19,20,23,16,11].

This paper proposes a decision-making framework for multi-class classification
problem with misclassification costs and resource constraints. Our approach
combines a cost-sensitive algorithm and an optimization model that finds the
optimal solution of the resource allocation.

2 Background and Literature Review

In this section, we review various approaches suggested by researchers for making
classifiers cost sensitive. We then review related research studies that used
classification algorithms for the limited resource allocation problem.

2.1 Cost-Sensitive Methods for Misclassification Cost Problems

First, we introduce definitions used throughout the paper. We denote a fully
labeled training data set by D = (X,Y ). X ∈ R|S|×|M | is a set of samples S,
with a set of features M . The labels are stored in the vector Y ∈ R|S|×|1|, i.e.,
the Ys,1 entry represents the class a sample xs ∈ X belongs to, briefly denoted by
ys. We assume a set of different classes, denoted as F , meaning that Y contains
|F | different values. M is a classification model that returns probability matrix
Ŷ ∈ (0, 1)|S|×|F |, i.e., a vector of estimated probabilities for each sample, for each
possible class. The Ŷs,i entry represents the probability that a sample xs ∈ X

belongs to class i, Ŷs,i = P (i|xs). Each sample is assigned to the class that has the
highest probability (that is, the maximum likelihood), i.e., ŷs = argmax

i
P (i|xs).

Real-world classification tasks usually involve misclassification costs that
result from different types of misclassification errors. In these classification tasks,
which are known as misclassification cost problems, the performance of a classifier
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is usually assessed by the expected misclassification cost and not by its accuracy,
which is a common criterion for classification problems without costs [5]. Over the
years, many cost-sensitive methods have been proposed to address classification
tasks with different costs incurred as a result of different types of misclassification
errors. These methods can be categorized into three main approaches (see [21]):

1. Data level approach: These methods modify the class distribution in the
training data without modifying the learning process. Changing the training
data usually refers to pre-training modification of the distribution of classes
using an over- or under-sampling distribution of classes [5,15] or weighting
the samples [27,9].

2. Algorithmic level approach: These methods change the learning process by
directly incorporating the misclassification costs into the classifier training so
that they are biased towards classes with high misclassification costs [14,24,2].

3. Decision level approach: These methods assign samples to classes based on the
insensitive classifier’s outputs, such that a minimum expected cost achieved.
Such methods usually refer to post-training modification of the outputs by
introducing the misclassification costs when a decision on classification of a
sample to a class is being made [27,18].

Assume a misclassification cost matrix C ∈ R|F |×|F |, where Ci,j is the cost
associated with incorrectly classifying a sample to class i instead of the actual
label j. According to the objective of misclassification cost problem, a sample
xs ∈ X should be classified into the class i that minimizes the expected loss (cost
in our case) at Eq. 1:

L (xs, i) =
∑
j

P (j|xs)Ci,j . (1)

Thus, the optimal predicted class that minimizes the expected loss is ŷs =
argmin

i
L(xs, i). The decision level approach assigns samples to classes based on

the probability outputs Ŷ of an insensitive classifier such that the loss function L
is minimized. In our research, we propose a hybrid framework that combines both
an algorithmic level approach and a decision level approach. Thus, the probability
outputs of cost-sensitive classifiers are used as inputs for the optimization model
that minimizes the loss function L.

2.2 Machine Learning and Optimization Models for Classification
Tasks with Constraints

Recently, several research studies proposed integrating machine learning methods
and mathematical modeling formulation to solve classification tasks with limited
resource allocation. Usually, the machine learning classification phase generates
local probability outputs for each sample in the data set reflecting the probabilities
of successful classification for every class, while the mathematical model seeks
to optimize an objective function, while meeting global constraints and decision
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maker requirements. In [17], a framework that integrates interpretable machine
learning models together with mathematical programming was proposed for
handling allocation of applications to a limited number of open positions, while
aiming to achieve high recruitment success (candidate qualification and match
with low probability of turnover). The machine learning model was used to
generate probabilities of successful recruitment per employee and position; the
mathematical modeling took into account the constraint (limited number of
open positions) and the diversity of the workforce among different departments.
Another study [13] proposed a resource allocation scheme for classification of
workload tasks with similar resource requirements. Here the aim was to efficiently
allocate available resources while reducing energy consumption by minimizing the
number of active physical machines. A solution that combines classification models
with an optimization model to allocate limited resources to identify customer
groups with different characteristics for marketing of a new product application
while minimizing regret is proposed in [26]. In [6], a combination of a machine
learning algorithm and optimization model is proposed to improve the efficiency
of hospital operating rooms. The researchers used the machine learning algorithms
to predict the uncertain recovery duration of surgical patients, which was then
used as input for an optimization model meant to calculate optimal scheduling.
The research study of [8] proposed an approach that introduces diagnosis-related
group classifications into a mixed-integer programming-based resource allocation
model that increase the utilization of resources such as operating rooms and
beds.

None of the previous studies sought to solve misclassification cost and limited
resource allocation problems. Recent pioneering research did develop an adaptive
learning approach that considers resource constraints and misclassification costs
for the binary classification problem [1]. The solution of the resource allocation
of the optimization model for the binary case, however, is trivial, and thus so are
the resource allocation decisions determined by the classifier’s probability matrix.

The main contributions of the paper are:

1. Methodology We suggest a hybrid framework for solving multi-class classifi-
cation problems with misclassification costs and resource constraints. The
hybrid framework utilizes both algorithmic level and decision level approaches.

2. Modeling The suggested model can handle settings in which the resource’s
demand changes over time. The resource allocation literature has, in general,
focused on optimizing specific objectives in a static environment where the
resource’s demand is known. In an enormous amount of real-world cases,
however, uncertainty is inherently involved, and the resource’s demand can
change over time. For example, the number of patients who come to an
emergency department and regarding whom staff have to decide whether or
not to hospitalize, changes over time.

3. Practicability A case study of medical resource allocation with misclassifica-
tion costs demonstrates the applicability of the proposed hybrid framework
and its superiority over the common decision level approach, which uses a
cost-insensitive classifier with an optimization model.
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The rest of the paper is organized as follows. In Section 3, we introduce the
proposed framework for solving a classification problem with misclassification
costs and resource constraints. Section 4 presents the numerical experiments and
results when evaluating and benchmarking the proposed framework against the
commonly used approach. Section 5 concludes the paper.

3 Methods

3.1 Hybrid Framework for a Classification Problem with
Misclassification Costs and Resource Constraints

This section introduces a hybrid cost-sensitive (Hyb_CS) framework for minimiz-
ing the misclassification costs of the resource-constrained classification problem,
by utilizing both decision level and algorithmic level approaches. A key property
of our framework is the generation of the probability matrix Ŷ by a cost-sensitive
classifier (algorithmic level approach), that can be used as input for our opti-
mization model (decision level approach), aiming to achieve minimum costs while
satisfying the resource constraints. Figure 1 presents the proposed framework
consisting of two phases. In the first phase, a cost-sensitive machine learning
algorithm (CS_ML) is trained using a training data set. In each epoch, the
generated models are applied on a validation data set. The output of this phase,
the probability matrix, is used in the second phase as input for the optimization
model (decision level approach). The optimization model finds the predicted label
of each sample, aiming to achieve minimum cost while satisfying the resource
constraints. We select a cost-sensitive classifier based on the costs achieved after
the optimization model phase on the validation data, to be applied over the test
data as presented in Figure 2.

Section 3.2 presents a cost-sensitive neural network that is used in the experi-
mental study. A detailed description of the optimization model is described in
Section 3.3.

Fig. 1: Schematic of the Hyb_CS training process framework
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Fig. 2: Schematic process of applying the chosen cost-sensitive model to test data

3.2 Cost-Sensitive Neural Network

Many research studies used an algorithmic level approach to introduce the
misclassification costs into the training of a neural network, in order to reduce the
cost of misclassified samples or to handle the class imbalanced problem [22,12,2,3].
In our research, we use the proposed neural network with ordinal loss from [3] as
a cost-sensitive learning model in phase 1 of the Hyb_CS framework (see Fig
1. An ordinal loss is proposed with a penalty cost matrix representing the costs
predicting a sample belongs to class i when the observed class is j. The ordinal
loss approach was used in [3] for knee osteoarthritis severity classifications, which
is also used in our paper as explained in Section 4. Using the cost matrix C, as
the ordinal matrix proposed in [3], and the probabilities matrix accepted by the
softmax layer, the ordinal loss is presented in Eq. 2,

OL =
∑
∀xs

∑
∀i∈F

Ci,ys
Ŷs,i, (2)

This ordinal loss function takes into account the estimated probabilities of the
samples for each one of the possible classes Ŷ and the misclassification costs
associated with these predictions compared to the actual labels.

3.3 Resource-Constrained Optimization Model

We now describe the optimization model used in phase two of the proposed
Hyb_CS framework shown in Figure 1. The model receives the probability
matrix Ŷ generated from the cost-sensitive learning model trained in the first
phase of the proposed framework and a misclassification cost matrix C ∈ R|F |×|F |.
Our assumption is that available resources for each class i ∈ F , Bi, limits
the number of samples in the considered data set S′ (test data set) classified
as belonging to this class. The learning process is conducted on the training
data set, and the model is validated on a validation data set that usually has
different number of samples than the test data set. Thus, we project the resource
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constraints of the test data set onto the training and validation data sets by
calculating the maximal percent of all classifications of the considered data set
related to class i, i.e., ni = Bi

|S′ | . In this way, we use the resource constraint
for each class i for the training and validation processes as a product of the
data set size and ni. We define a constraint vector N ∈ (0, 1)|F | as input to the
optimization model, where these ni’s values relate to all classes.

The output of the optimization model is R ∈ {0, 1}|S|×|F |, a binary matrix,
where Rs,i = 1 represents a sample s classified as belonging to class i. The model
forces each sample to be classified to one class. Table 1 presents the notations
using in describing the problem.

Notation Size Meaning

S |S| Set of samples
F |F| Set of classes
C |F|×|F| Cost matrix
N |F|×|1| Constraint vector
Ŷ |S|×|F| Probability matrix
R |S|×|F| Result vector

Table 1: Notations in the resource-constrained optimization model

We now can model the resource allocation problem as follows:

min
|S|∑
s=1

|F |∑
i=1

Rs,i

|F |∑
j=1

(Ci,j · Ŷs,j) + γ ·
|F |∑
i=1

vi ·
|S|∑
s=1

Rs,i (3)

s.t.
|S|∑
s=1

Rs,i ≤ ni · |S|, ∀i ∈ F (4)

F∑
i=1

Rs,i = 1, ∀s ∈ S (5)

Our goal is to minimize a cost function comprising two parts. The first one
represents the misclassification costs and the second one expresses the costs
associated with resource allocation (e.g., time spent by a resource, price of resource
allocation). The price of assigning a resource to a sample that is classified to label
i is denoted as vi. We use γ ∈ [0, 1] to balance the two cost function components.
We define two constraints in the optimization model. The first constraint in Eq.
4 ensures that the number of samples that are classified as label i is lower than
the resource constraint, reflected by percent of the total number of classifications.
The second constraint in Eq. 5 ensures that each sample is assigned only one label.
An optimal solution for the R matrix is achieved by minimizing the objective
function in Eq. 3, while satisfying the constraints.
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4 Experimental Study

In the following, we provide an experimental investigation of the proposed
Hyb_CS, and compared its results with the common approach of using an
insensitive classifier with a decision level approach (denoted herein as Dec_CS).
We use a VGG-19 neural network with cross-entropy loss function as a cost-
insensitive classifier and a VGG-19 neural network with ordinal loss function,
described in Section 3.2, as the cost-sensitive classifier in the first phase of the
proposed hybrid framework.

To understand the reasons for the different performances of the proposed
hybrid framework verus the common approach, we investigate: 1) the change in
classifications and cost improvement obtained from the machine learning model
in the first phase, by the optimization model without the resource constraints, 2)
the change in classifications and cost improvement obtained from the machine
learning model in the first phase, by the optimization model with resource
constraints, and 3) the effect of the constraint level on the classifications and
costs.

4.1 The Data

Hyb_CS was applied to a publicly available data set obtained from the Os-
teoarthritis Initiative (OAI), and available at https://nda.nih.gov/oai/. Knee
Osteoarthritis (OA) is the most common cause of activity limitation and physical
disability among older adults. Early detection and treatment may slow down its
progression so streamlining these medical procedures are very important. A total
of 4796 images of knee bilateral posterior-anterior fixed flexion radiographs of
4796 participants exist in the data set. In our research, we used a total of 4130
pairs of knee joints, acquired from the OAI repository and made available by
[3] after a prepossessing stage. All knee X-ray images were randomly divided
into training, validation, and test data sets at a ratio of 7:1:2. The goal of this
experiment was to classify the patients into five classes representing different OA
severity levels and allocate the patients to limited treatment resources, according
to classification results. We assume that assigning a patient to a wrong treatment
leads to a misclassification cost.

4.2 Experimental Design

We used the proposed hybrid framework in two experiment setups with different
objectives. In these experiments, we assume that prices for resources assignment
do not exist, vi = 0,∀i ∈ F and used a symmetric and ordinal cost matrix C,
with ∀i, j : Ci,j = 2 · |j − i|+ 1, such that larger deviation between actual and
predicted classes reflect errors with more serious consequences. For consistency,
we used the same epoch selection mechanism to find the "best" trained model
in all experiments. The selected epoch is that with a lower obtained cost (after
applying the optimization model) than all previous epochs and without a cost
improvement higher than 2.5% in the next five epochs.

https://nda.nih.gov/oai/
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Setup 1 – Misclassification Costs Problem Without Resource Con-
straints This experiment was designed so that we could investigate the behavior
and performance of Hyb_CS, combining both decision level and algorithmic
level approaches, compared to the common approach of applying only a decision
level approach on the probability matrix accepted by the cost-insensitive learning
model. The goal of this experiment was to classify the patients into OA severity
levels such that minimum misclassification costs will be expended, while assuming
unlimited resources.

Setup 2 – Misclassification Costs Problem with Resource Constraints
This experiment was designed to investigate the behaviour and performance
of Hyb_CS compared to the common approach, while integrating the resource
constraints into the optimization model. Scarce resources allocation is supposed
to increase the cost compared to the unlimited resources problem. In this experi-
ment we investigated whether using the cost-sensitive learning model (instead
of the cost-insensitive learning model) reduces the amount of changes in the
classifications obtained from the machine learning by the optimization model
and leads to better results. In this setup, we used two different scenarios. The
first scenario had a constraint on the number of treatments for patients with
severity level 3, B3 = 50, i.e., n3 = 3% assuming |S′| = 1656 patients in the
considered data set (test data set). The second scenario has a constraint on
the number of treatments for patients with severity level 4, B4 = 8/17/25, i.e.,
n4 = 0.5%/1%/1.5%.

4.3 Results and Discussion

Setup 1 – Misclassification Costs Problem Without Resource Con-
straints The probability matrices of the Cost-Sensitive VGG-19 (CS_VGG-19)
and VGG-19 were used to assign the images to the class with the highest probabil-
ity, following the maximum likelihood principle. Figure 3 presents the confusion
matrices of the actual labels versus the predicted labels for the applied classifiers.
It can be observed that when using the CS_VGG-19, the amount of misclassifica-
tions decreases in each row when moving away from the diagonal, a phenomenon
that does not occur when applying the VGG-19. For example, it can be seen in
the left confusion matrix in Figure 3 that VGG-19 classified 61 samples as class
0 instead of the actual class, class 2, compared to 16 samples classified as class 1
instead of the actual class, class 2.
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(a) VGG-19 (b) CS_VGG-19

Fig. 3: Confusion matrices of the actual labels versus the predicted labels for
VGG-19 (left) and CS_VGG-19 (right)

The misclassification cost of the training and validation data sets run over 20
epochs is presented in Figure 4 after the classifier phase (VGG-19 or CS_VGG-19)
and after applying the optimization model. As expected, when applying a VGG-19
classifier (insensitive-cost learner), a cost improvement was observed in the left
graph for both training and validations data sets, after applying the optimization
model (decision level approach), which aimed to minimize the misclassification
cost using the obtained probability matrix. When applying the CS_VGG-19
classifier (algorithmic level approach), however, the optimization model did not
contribute to a further improvement in the cost result. In this experiment with
unlimited resources, the algorithmic level approach yields better cost results
than the decision level approach. Applying the optimization model (decision level
approach) to the probability matrix obtained from the cost-sensitive learner does
not improve the cost results. The black dashed lines in the graphs represent the
selected epochs according to the stopping mechanism described in Section 4.2.
The trained models at these epochs were saved and used for the test data sets as
described in Figure 2.
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(a) VGG-19 compared to Dec_CS (b) CS_VGG-19 compared to Hyb_CS

Fig. 4: The misclassification cost of the training and validation data sets run
over 20 epochs after the classification phase (VGG-19 or CS_VGG-19) and after
applying the optimization model (Dec_CS or Hyb_CS). The black dashed lines
represent the stopping epoch.

Setup 2 – Misclassification Costs Problem with Resource Constraints
In this setup, since resource constraints exist, an optimization model is applied to
achieve minimum misclassification costs while satisfying the resource constraints.
Whereas in the previous setup, the optimization model does not contribute to
a further improvement in the cost of CS_VGG-19 and, therefore, its use is
superfluous, in this setup the optimization model must be applied to ensure
compliance with the resource constraints.

A constraint on the number of treatments for patients with OA severity level 3
Figure 5 presents the confusion matrices of the actual labels versus the predicted
labels for the common decision level approach with VGG-19 and Hyb_CS,
without a resource constraint (upper matrices) and when applying a constraint
on the number of treatments for patients with severity level 3, i.e., n3 = 3%
(lower matrices).

In Figure 5, the fourth column (representing severity level 3) of the lower
matrices sums to 25, which is equal to 3% of the validation data set. In both the
common decision level approach and Hyb_CS, the reduction in the number of
correctly predicted samples was similar, i.e., 35 and 39 respectively, since samples
were moved from predictions of severity level 3 to other severity levels, to meet
the resource constraint. In other words, since the Hyb_CS cost results was better
than the common decision level approach, for the misclassification cost problem
without resource constraints, it is also yielded better results for the problem with
the resource constraint.
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(a) Dec_CS (b) Hyb_CS

(c) Dec_CS with n3 = 3% (d) Hyb_CS with n3 = 3%

Fig. 5: Confusion matrices of the actual labels versus the predicted labels for
Dec_CS and Hyb_CS, without a resource constraint (upper matrices) and when
applying a 3%- constraint on severity level 3 (lower matrices)

Figure 6 shows the percentage of samples whose cost, derived from the VGG-
19 and CS_VGG-19 classifications, which were improved, left unchanged, or
worsened by the optimization model, denoted ’pos’, ’neg’ and ’equal’, respectively.
Note that the ’equal’ category includes samples whose classifications were left
unchanged and others that were changed by the optimization model; the latter
change, however, resulted in the sample’s classification having the same distance
from the actual label as before the change. The two left bars represent the
VGG-19 and CS_VGG-19 results for the misclassification costs problem without
constraints. The two right bars present the results for the misclassification cost
problem with resource constraints. It can be observed that the CS_VGG-19
’equal’ parts are higher than the VGG-19 ’equal’ parts in both cases, i.e., with
and without the constraints. This insight is rational since CS_VGG-19 takes into
account the misclassification costs already in the learning phase. As expected
in the resource constraint problem, the percentage of ’neg’ samples was higher
than the percentage of ’pos’ examples in contrast to the unconstrained problem,
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because classification changes are required to satisfy the resource constraint, even
at the expense of increasing the cost.

Fig. 6: Percentage of samples whose cost, derived from the VGG-19 and CS_VGG-
19 classifications , were improved, left unchanged, or worsened by the optimization
model, denoted by ’pos’, ’neg’ and ’equal’, respectively. The two left bars present
the problem without resource constraints and the two right bars with the resource
constraints.

In each experiment, we selected the classification model according to the epoch
selection mechanism described in Section 4.2 and applied these models over the
test data sets to the yield costs (and accuracy) presented in Table 2. It can be
seen that applying Hyb_CS to the misclassification cost problems, both with and
without constraints, yielded better cost results with improvements of 4.2% and
4.5%, respectively, and improved accuracy results of 3.5% and 3.2%, respectively.

W/o constraints n3 = 3%

Model Dec_CS Hyb_CS Dec_CS Hyb_CS

Cost 1.883 1.798 1.984 1.9
Accuracy 0.627 0.647 0.577 0.597

Table 2: Cost and accuracy results on test data set applying Dec_CS and Hyb_CS
to misclassification cost problems, both without and with resource constraints
for patients with severity level 3
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Effect of different levels of constraints on the number of available treatments
To evaluate the effect of the constraint on the Hyb_CS cost results, we calculated
the misclassification costs for different constraint levels, n4 = 0.5%/1%/1.5%. It
can be observed from Table 3 that the tighter the constraint, the greater the
number of classification’s changes performed by the optimization model. The
misclassification cost of the validation data set over 20 epochs after applying a
classification model in the first phase and after running an optimization model
in the second phase for the different constraint levels is presented in Figure 7. It
can be observed that the tighter the constraint, the higher the cost.

Model W/o constraints n4 = 1.5% n4 = 1% n4 = 0.5%

Dec_CS 0.163 0.171 0.176 0.18
Hyb_CS 0.131 0.143 0.148 0.151

Table 3: Mean number of classification’s changes performed by the optimization
model after applying Dec_CS and Hyb_CS for the different constraint levels

(a) Dec_CS (b) Hyb_CS

Fig. 7: The misclassification cost of the validation data set over 20 epochs after
applying Dec_CS and Hyb_CS for the different constraint levels

Table 4 presents the costs and accuracy results obtained by applying the selected
classification models in Dec_CS and Hyb_CS over the test data for different
levels of resource constraints. It can be seen that applying Hyb_CS with different
levels of resource constraints show improvements (between 3.6%-4.6%) in the
cost results compared to the Dec_CS approach. Hyb_CS improvements in the
accuracy results compared to the Dec_CS approach are in the range of 1.3%-3.2%.



A Hybrid Cost-Sensitive ML and Optimization Models 15

n4 = 0.5% n4 = 1% n4 = 1.5%

Model Dec_CS Hyb_CS Dec_CS Hyb_CS Dec_CS Hyb_CS

Cost 1.9 1.832 1.892 1.809 1.886 1.802
Accuracy 0.618 0.626 0.623 0.641 0.625 0.645

Table 4: Cost and accuracy results for test data set after applying Dec_CS and
Hyb_CS to misclassification cost problems with resource constraint levels of
0.5%/1%/1.5% for patients with severity level 4

5 Conclusion

We propose a novel hybrid framework that combines both algorithmic level and
decision level approaches. The objective is to solve multi-class misclassification
costs problems with resource constraints. We demonstrated via experiments that
the optimization model did not contribute to a further improvement in the cost
value when using a cost-sensitive classification model when resource constraints
do not exist and, therefore, the model is superfluous. When resource constraints
exist, the optimization model should be used to take into account the resource
constraints. In this case, the proposed hybrid framework combining both a cost-
sensitive learning algorithm and an optimization model yields better results than
the common decision level approach of using a cost-insensitive learning algorithm
with an optimization model. Our experimental results show that the proposed
hybrid framework outperformed the common approach with a cost reduction in
the range of 3.6%-4.6% for the misclassification problem with different levels of
resource constraints, and 4.5% without resource constraints on the test data set.
Similar accuracy improvements were observed in the range of 1.3%-3.5% for the
misclassification problem with different levels of resource constraints, and 3.2%
without resource constraints on the test data set. Future research directions that
we are considering are: 1) utilizing the classification changes performed by the
optimization model to implement adaptive learning of the cost-sensitive learning
algorithm. 2) Investigate different combinations of cost-sensitive approaches such
as data level and decision level approaches.
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