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A B S T R A C T

Ordinal classification tasks that require the allocation of limited resources are prevalent in various real-
world scenarios. Examples include assessing disease severity in the context of medical resource allocation
and categorizing the quality of machines as good, medium, or bad to schedule maintenance treatment
within capacity constraints. We propose a comprehensive analytic framework for scenarios that, in addition
to including ordinal classification problems, also have constraints on the number of classified samples of
classes due to resource limitations. The framework uses a probability matrix generated by a trained ordinal
classifier as the input for an optimization model with a minimum misclassification cost objective and resource
allocation constraints. We illustrated the equivalence between the formulation of the resource allocation
problem into samples and the transportation problem, enabling the utilization of established transportation
heuristics for our solution. To demonstrate the effectiveness and applicability of the framework, we applied
it with various ordinal machine-learning models to both tabular data and image datasets. The proposed
framework performs significantly better than the alternative common approach of using non-ordinal classifiers,
achieving an average cost reduction of 1% with ordinal decision tree-based models and 4.4% with ordinal
neural networks. Our results show that the proposed framework can provide an effective limited-resource
allocation for ordinal classification problems. Our code is available at https://github.com/liorRabkin/hybrid-
cost-sensitive-ml-optimization.
1. Introduction

Ordinal classification problems are commonly handled as multi-
class classification scenarios, where the target class displays a specific
ordinal order. These problems are typically associated with real-world
applications such as categorizing disease severity, and classification of
the emergency status of a patient (Silva et al., 2017; Nabi et al., 2019).

In classification problems, the presence of resource allocation issues
due to scarcity can introduce real-world constraints, thereby affect-
ing the distribution of classified samples across different classes (Li
et al., 2018; Gartner et al., 2015; Abukasis et al., 2022). Applying the
classification model directly to new data (test data) that stands apart
from the training dataset will not ensure conformity to the resource
constraint. Commonly, in classification problems, different decision-
makers may look for different target values depending on their own
purposes. Below, we explore various real-life scenarios that illustrate
resource constraints in ordinal classification problems:

(i) Disease severity classification: In disease severity monitoring,
accurately identifying the state of the disease is crucial for adopting an
appropriate treatment method (Haba et al., 2023; Singer et al., 2021).
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The classes represent different levels of severity, such as mild, moder-
ate, and severe. In this scenario, a medical practitioner might possess a
restricted number of monitoring devices to identify disease progression
(whether a patient is in the initial or advanced stage of the illness).
Ideally, allocating these devices should prioritize the identification of
a substantial portion of patients in the early disease stages. However,
a medical center might prioritize recognizing patients in advanced
disease stages, leveraging a recognized high recovery success rate,
while optimizing the allocation of limited medical resources, including
surgical rooms and teams.

(ii) Likelihood of churning prediction: In customer churn predic-
tion (Wu et al., 2022), it is important to identify the likelihood of
churning to enable proactive activities aimed at reducing customer
churn and enhancing retention (Akan and Verma, 2022). The classes in
this problem typically lie on an ordinal scale. In this scenario, a limited
number of team leaders should be allocated to high-risk-level customers
for retention calls, while a limited number of employees should be
allocated to unstable customers who can potentially be retained with a
simple phone call.
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(iii) Credit scores prediction: When a client requests a loan or credit
from a lender, the lender needs to assess how risky it is to lend money
to that client (Juraev and Rakhimberdiev, 2022). The scores of clients,
which usually lie on an ordinal scale, reflect this risk (Dikkers and
Rothkrantz, 2005; Wang et al., 2022). Borrowers often handle the
problem of limited credit allocation, considering the prediction of the
loaner’s credit score (Zhu et al., 2022; Tran and Verhoeven, 2021).

(iv) Product’s perceived value classification: In this task, the estima-
tion of perceived value can be categorized into specific levels, such as
low, medium, or high, representing a combination of various common
emotional and functional dimensions, such as quality and value for
money of the product (Sweeney and Soutar, 2001). The objective of
this ordinal classification can be, for example, products allocation to
limited online advertising spaces or integration into live streaming e-
commerce with restricted capacity to enhance purchase intention (Zhu
et al., 2023; Li et al., 2024).

In the experimental investigation section of our paper, we will use
datasets representing the first two problems.

These sorts of applications typically involve misclassification costs
that originate from the consequences of errors (Zhang et al., 2021;
Frumosu et al., 2020). For instance, misclassifying patients with a
high severity level of disease as those with a low severity level could
have life-threatening consequences. However, in many cases precise
misclassification cost values are unknown. Therefore, the gap between
the actual and predicted classes, while considering the existing class
order among classes, can be employed to reflect the misclassification
errors as proposed in many research studies in the literature (Marudi
et al., 2022; He, 2022). In some tasks, misclassification errors may
display asymmetry. For instance, misclassifying ill patients as healthy in
disease severity classification could pose a much higher risk, resulting
in a different penalty than misclassifying healthy patients as ill. In
these cases, when the misclassification costs are unknown, asymmetric
and ordinal values reflecting the penalty of misclassification errors are
proposed (Lima et al., 2020).

In this article, a decision-making framework is introduced to address
the multi-class ordinal classification challenge with resource limita-
tions, all with the goal of cost minimization. Our method merges an
ordinal algorithm with an optimization model, collectively identify-
ing the optimum resource allocation solution. Throughout the paper,
various ordinal machine learning algorithms are showcased for the
first phase of the framework. This approach effectively illustrates the
universality of the framework, highlighting the application of various
algorithms customized for tabular and image datasets, all working
towards the same mission using a consistent methodology.

2. Background and literature review

This section presents the ordinal classification strategies proposed
by researchers and ordinal task notation. Following that, we evaluate
research studies that have utilized classification algorithms to address
the challenge of constrained resource allocation.

2.1. Ordinal classification problems

In the machine learning literature, ordinal algorithms were de-
veloped to address problems in which the target value maintains an
arbitrary scale, where only the relative ordering between the different
values is significant, and the distances between them are irrelevant
(Marudi et al., 2022; Lázaro and Figueiras-Vidal, 2023; Singer et al.,
2020; Rosati et al., 2022). These ordinal algorithms were designed to
tackle real-world applications, including tasks like categorizing disease
severity, assessing product quality as good, medium, or bad in the
industry, classifying the severity of traffic accident casualties in trans-
portation, and predicting traffic intensities as high, moderate, or light
in queuing systems (see, for example, Nabi et al. (2019), Wang et al.
(2021), Yıldırım et al. (2019), Kim et al. (2023)). A comprehensive list
2

of applications across various research areas and a proposed categoriza-
tion of ordinal classification methods into distinct approaches, can be
found at Gutierrez et al. (Gutiérrez et al., 2015).

Over the years, many ordinal classification methods have been
proposed to address classification tasks on ordinal data. In these stud-
ies, as discussed in Section 1, misclassification costs are incurred and
influenced by the distance between the actual and predicted classes.
The greater the distance, the higher the misclassification cost. In the
disease severity classification problem, for example, a larger distance
between the predicted severity level of a patient and the actual severity
level may result in less appropriate treatment for the patient, leading
to a higher risk. The primary limitation of these methods arises when
the cost matrix is not known and predefined, as multiple options
for different cost matrices may reflect the same ordinal scale of the
problem (Abukasis et al., 2022). In this problem, usually the order
information is introduced into the learning process within the classifi-
cation algorithms. For instance, because classes are typically arranged
in ascending or descending order of quality, Marudi et al. (2022),
Singer et al. (2020) suggested assigning reward or cost values to each
class to capture the ordinal nature of the class variable. These values
are subsequently incorporated into the learning process of ordinal
classification models.

2.2. Ordinal classification notation

Now, we introduce definitions used throughout the paper. We de-
note a fully labeled training dataset by 𝐷 = (𝑋, 𝑌 ). 𝑋 ∈ R|𝑆|×|𝐹 | is a
et of samples 𝑆, with a set of features 𝐹 . The labels are stored in the
ector 𝑌 ∈ R|𝑆|×|1|, i.e., the 𝑌𝑠,1 entry represents the class a sample
𝑠 ∈ 𝑋 belongs to, briefly denoted by 𝑦𝑠. We assume a set of different

classes, denoted as 𝐶, such that ∀𝑖 ∈ 𝑆, 𝑦𝑖 ∈ 𝐶.
Assume an ordinal cost matrix 𝑂 ∈ R|𝐶|×|𝐶|, where 𝑂𝑖,𝑗 denote

the penalty cost between the predicted class 𝑖 and the real class 𝑗.
Given that, in many classification problems, the misclassification costs
are often unknown or not predefined, as discussed in Section 2.1, we
adopt the approach proposed by Singer et al. (2020) and Marudi et al.
(2022). They introduced a function 𝑣(⋅) that assigns distinct values to
lasses on the ordinal scale, considering the potential magnitude of
lassification errors between predicted and actual classes. Specifically,
or every 𝑐𝑖, 𝑐𝑗 ∈ 𝐶 where 𝑖 < 𝑗, it holds that 𝑣(𝑐𝑖) < 𝑣(𝑐𝑗 ). Thus, 𝑂𝑖,𝑗 =
𝑗,𝑖 = |𝑣(𝑐𝑖) − 𝑣(𝑐𝑗 )|. According to the objective of the misclassification
ost problem, a sample 𝑥𝑠 ∈ 𝑋 should be classified into the class 𝑖 that
inimizes the cost.  is a classification model that returns probability
atrix 𝑌 ∈ (0, 1)|𝑆|×|𝐶|, i.e., a vector of estimated probabilities for each

ample, for each possible class. The 𝑌𝑠,𝑖 entry represents the probability
hat a sample 𝑥𝑠 ∈ 𝑋 belongs to class 𝑖, 𝑌𝑠,𝑖 = 𝑃 (𝑖|𝑥𝑠). Each sample
s assigned to the class that has the highest probability (that is, the
aximum likelihood), i.e., �̂�𝑠 = arg max𝑖 𝑃 (𝑖|𝑥𝑠).

.3. Machine learning and optimization models for resource-constrained
lassification tasks

A number of research investigations have suggested the integration
f machine learning techniques and optimization models to address
lassification challenges that involve resource constraints. Typically,
uring the machine learning classification stage, individual probabil-
ties are produced for each sample within the dataset, indicating the
ikelihood of successful classification for each class. The optimization
odel operates to optimize an objective function while also ensuring

ompliance with resource constraints specified by decision-makers.
The study in Li et al. (2018) introduced a resource allocation strat-

gy designed for categorizing workload tasks that share comparable
esource needs. The primary goal was to optimize the allocation of
xisting resources, concurrently diminishing energy consumption by
inimizing the count of operational physical machines.
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Another study Pessach et al. (2020) presented a methodology that
merges interpretable machine learning models with mathematical pro-
gramming. The primary goal of this strategy was to assign well-matched
candidates to a limited number of open positions, thereby reducing
the risk of turnover. The machine learning model was used to pro-
duce success probabilities for employee-to-position matching, while the
mathematical modeling considered the constraint of a limited number
of available positions and the workforce’s diversity across various
departments.

In Zhang et al. (2020), an approach that combines classification
models with an optimization model is presented to address the chal-
lenge of allocating limited resources to target customer groups with
diverse characteristics in the context of precision marketing for a new
product.

The work presented in Eshghali et al. (2023) suggests a fusion
of a machine learning algorithm and an optimization model to en-
hance the productivity of hospital operating rooms, while taking into
account both ellective and emergency patients. Due to the inherent
randomness in emergency patient arrival, a random forest machine
learning model is used to obtain the emergency patient surgery du-
ration and arrival time, serving as input for an optimization model
designed to determine the most optimal scheduling. The research out-
lined in Gartner et al. (2015) introduced an approach that incorporates
diagnosis-related group classifications using machine learning model
into a resource allocation model based on mixed-integer programming.
This approach was aimed at optimizing the utilization of resources like
operating rooms and beds.

While these research studies have primarily concentrated on in-
tegrating machine learning techniques and optimization models to
tackle classification challenges related to resource allocation, none have
considered ordinal classification problems, where the class variable
exhibits a specific order. Furthermore, these studies have typically pro-
vided solutions tailored to specific applications using tabular datasets.
In this paper, we introduce a comprehensive analytical framework
for addressing ordinal classification problems with constraints on the
number of samples classified per class due to resource limitations. We
demonstrated that the formulation of the resource allocation problem
into samples is equivalent to the transportation problem, allowing
the use of well-known transportation heuristics to solve our prob-
lem. Additionally, we showed that the characteristics of the problem
formulation enable the finding of a solution with integer variables.
We illustrate the effectiveness of this framework using both tabular
and image datasets, employing ordinal decision tree-based models and
ordinal neural networks, respectively.

The remainder of the paper is structured as follows: In Section 3,
we introduce the proposed framework designed to address ordinal
classification problems with resource constraints. Section 4 is dedicated
to presenting the outcomes of our numerical experiments, which assess
and benchmark the proposed framework against commonly used ap-
proaches. In this section, we present the outcomes obtained by utilizing
ordinal decision tree-based models on tabular data and employing
ordinal neural networks for image data analysis. Finally, Section 5
offers concluding remarks to summarize and wrap up the paper.

3. Methods

3.1. Hybrid framework for a ordinal classification problem with limited
resources constraints

This section introduces a Constraint-based Ordinal Classification
Framework (COCF) for minimizing the costs of the resource-constrained
ordinal classification problem, by utilizing both the ordinal machine
learning method and optimization model. A key property of our frame-
work is the generation of the probability matrix 𝑌 by an ordinal
classifier that can be used as input for our optimization model, aiming
3

to achieve minimum costs while satisfying the resource constraints. t
Fig. 1 presents the proposed framework consisting of two phases. An
ordinal machine learning algorithm is trained using a training dataset
in the first phase. The output of this phase, the probability matrix, is
used in the second phase as input for the optimization model. Then,
using the validation data, we select the best hyper-parameters for the
ordinal classifier based on the costs achieved after the optimization
model in the second phase. The optimization model is solved to find
the classifications that meet the constraints and create the lowest cost.
The test dataset goes through the machine learning phase, resulting in
a probability matrix that is used as input to the optimization phase,
which produces a classification for each instance as presented in Fig. 2.

In our research, in the experimental study, we employ two types
of ordinal methods to demonstrate the effectiveness of our proposed
framework on both tabular and image datasets, as explained in Sec-
tion 3.2. A detailed description of the optimization model is described
in Section 3.3.

3.2. Ordinal machine learning methods

In the experimental study, we will evaluate the effectiveness of
the proposed COCF framework on both tabular and image datasets.
Specifically, we will explore its performance on: (i) A tabular dataset
representing the likelihood of churning prediction problem, which cor-
responds to the second real-life scenario in the introduction. (ii) An im-
age dataset representing the problem of disease severity classification,
corresponding to the first real-life scenario in the introduction. For such
problem domains, interpretability of the ordinal classification models
is vital to support human decision-making and improve understanding
of resource allocation reasons. Additionally, different decision-makers,
each responsible for distinct types of resources, may seek different class
values. To address these challenges, we choose to utilize ordinal deci-
sion tree-based methods for the tabular dataset (Marudi et al., 2022;
Singer et al., 2020, 2021; Singer and Marudi, 2020; Singer and Cohen,
2020). These methods enable the construction of interpretable tree
models based on objective defined by decision-makers, as explained
later in Eq. (2) (Marudi et al., 2022; Singer et al., 2020). In the case
of the image dataset, we use an ordinal neural network method (Chen
et al., 2019; Liu et al., 2022). This method is tailored to handle the
unique characteristics of image-based ordinal classification tasks.

Ordinal decision tree-based models. In the experiments with the tabular
dataset, we employed the ordinal decision tree and ordinal random
forest algorithms as proposed in Marudi et al. (2022), Singer et al.
(2020) in the first phase of the framework (see Fig. 1). The ordinal
entropy, referred to as objective-based entropy (OBE), is used in the
tree construction process, which is formulated as

𝐻(𝜏) = −
|𝐶|

∑

𝑖=1
𝜀𝑖𝑃 (𝑐𝑖) log2 𝑃 (𝑐𝑖), (1)

here

𝑖(𝑐𝑖, 𝜏) =
|𝑣(𝑐𝑖) − 𝜏(𝑠)|𝛼

∑

|𝐶|

𝑗=1 |𝑣(𝑐𝑗 ) − 𝜏(𝑠)|𝛼
. (2)

(𝑐𝑖) is defined as the probability that an instance belongs to class 𝑐𝑖,
nd 𝜀𝑖 represents the normalized distance between the value of class 𝑐𝑖,
(𝑐𝑖), and the objective 𝜏(𝑠). The ordinal decision tree-based algorithms
o not use an ordinal cost matrix, however considering the costs of
rrors from predefined objective 𝜏(𝑠), where 𝑠 represents a statistical
unction calculated over the data. In Singer et al. (2020) for example,
he costs reflect the deviation of the values of the classes relative to
he value of the most likely class, i.e., 𝜏(𝑠) = 𝑣(𝑐𝑚𝑜𝑑𝑒). 𝛼 ≥ 0 is a
ormalization parameter that biases the distances of the classes com-
ared to the objective 𝜏(𝑠). The probability matrix 𝑌 obtained by the
rdinal decision tree-based methods, used as input for the optimization
odel. The hyper-parameters 𝛼 and 𝑠 are chosen by grid search over

he validation dataset.
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Fig. 1. Schematic illustration of Constraint-based Ordinal Classification Framework (COCF).
Fig. 2. Schematic process of applying the chosen ordinal machine learning model to test data.
Ordinal neural network. In the experiments with the images dataset, we
employed the neural network with ordinal loss from Chen et al. (2019)
as an ordinal machine learning model in the first phase of the COCF
framework (see Fig. 1). An ordinal loss is proposed using the ordinal
cost matrix representing the costs predicting a sample belongs to class
𝑖 when the observed class is 𝑦𝑠 and the estimated probabilities of the
samples for each one of the possible classes 𝑌 as follows,

𝑂𝐿 =
∑

∀𝑥𝑠

∑

∀𝑖∈𝐶
𝑂𝑖,𝑦𝑠𝑌𝑠,𝑖. (3)

The probability matrix 𝑌 obtained by the ordinal Neural Network, used
as input for the optimization model.

3.3. Resource-constrained optimization model

We now describe the optimization model used in phase two of
the proposed COCF framework shown in Fig. 1. The model receives
the probability matrix 𝑌 generated from the ordinal model trained in
the first phase of the proposed framework and a misclassification cost
matrix 𝑂 ∈ R|𝐶|×|𝐶|.

Our assumption is that the available resources for each class, de-
noted as 𝑖 for each class 𝑖 ∈ 𝐶, impose limitations on the number
of samples in the considered dataset 𝑆′ (test dataset) that can be
classified as belonging to this class. The learning process takes place
on the training dataset, and the model’s performance is validated on a
separate validation dataset, which often contains different number of
samples compared to the test dataset. Thus, we project the resource
constraints of the test dataset onto the training and validation datasets.
This is achieved by calculating the available resources for each class
𝑖 as a percentage of all classifications within the considered dataset,
expressed as 𝑛𝑖 =

𝑖
|𝑆′

|

. In this way, we use the resource constraint for
each class 𝑖 for the training and validation processes as a product of the
4

Table 1
Notation in the resource-constrained optimization model.
Notation Size Meaning

𝑆 |S| Set of samples
𝐶 |C| Set of classes
𝑂 |C| × |C| Ordinal cost matrix
𝑁 |C| × |1| Constraint vector
𝑌 |S| × |C| Probability matrix
𝑅 |S| × |C| Result vector

dataset size and 𝑛𝑖. We define a constraint vector 𝑁 ∈ [0, 1]|𝐶| as input
to the optimization model, where these 𝑛𝑖’s values relate to all classes.

The output of the optimization model is represented as 𝑅 ∈
{0, 1}|𝑆|×|𝐶|, which is a binary matrix. In this matrix, 𝑅𝑠,𝑖 = 1 indicates
that a sample 𝑠 classified as belonging to class 𝑖. The model ensures
that each sample is classified into exactly one class. Table 1 presents
the notation used in describing the problem.

We now can model the resource allocation problem as follows:

min
|𝑆|
∑

𝑠=1

|𝐶|

∑

𝑖=1
𝑅𝑠,𝑖

|𝐶|

∑

𝑗=1
(𝑂𝑖,𝑗 ⋅ 𝑌𝑠,𝑗 ) (4)

s.t.
|𝑆|
∑

𝑠=1
𝑅𝑠,𝑖 ≤ 𝑛𝑖 ⋅ |𝑆|, ∀𝑖 ∈ 𝐶 (5)

|𝐶|

∑

𝑖=1
𝑅𝑠,𝑖 = 1, ∀𝑠 ∈ 𝑆. (6)

Our goal is to minimize a cost function. We define two constraints
within the optimization model. As defined in Eq. (5), the first constraint
guarantees that the number of samples classified as label 𝑖 remains
below the resource constraint, expressed as a percentage of the total
number of classifications. The second constraint, presented in Eq. (6),
ensures that each sample receives a single label assignment. Note that
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the equality notation of Eq. (6) can be replaced by the inequality ≥ 1,
while the same optimal solution of a single label assignment is ob-
tained. An optimal solution for the matrix 𝑅 is achieved by minimizing
the objective function in Eq. (4), while satisfying these constraints.

The resource allocation problem is equivalent to the formulation
of the transportation problem, in which the supply exceeds total de-
mand (Ford and Fulkerson, 1956; Babu et al., 2020; Winston, 2004).
In this analogy, the set of classes 𝐶 can represent the warehouses, with
𝑛𝑖 ⋅ |𝑆| denoting the quantity of goods available at warehouse 𝑐𝑖. The
set of samples 𝑆 can represent the stores, where 1 is the quantity of
goods demanded at store 𝑥𝑠. The expression ∑

|𝐶|

𝑗=1(𝑂𝑖,𝑗 ⋅ 𝑌𝑠,𝑗 ) denotes
the transportation cost per unit for any warehouse 𝑐𝑖 to any store 𝑥𝑠.
The problem involves determining an optimal transportation scheme
between the warehouses and the stores. Given the simplicity of finding
a basic feasible solution when the total supply equals total demand
(referred to as a balanced transportation problem), we will create a
dummy sample to solve our problem, with demand equal to the amount
of excess supply, and assign a zero cost to shipments between the
dummy sample and classes (Winston, 2004). As the constraint matrix
of our optimization problem is completely unimodular and the resource
constraints and demand values are integers, the values of the variables
in each basic solution will be integers (Heller, 1957; Shapiro, 1979). To
determine the optimal solution for this problem, the process involves
establishing an initial feasible solution in the first step and then de-
termining the optimal solution using this initial solution (Korukoğlu
and Ballı, 2011). To find an initial solution, well-known transporta-
tion methods such as Vogel’s Approximation Method (VAM) and the
northwest corner method can be utilized (Korukoğlu and Ballı, 2011;
Tularam and Bhayo, 2014). While some heuristics quickly offer an
initial feasible solution that may not effectively minimize total costs,
others may yield highly effective solutions for minimizing total costs
but require significantly more time (Tularam and Bhayo, 2014). VAM
is a commonly used heuristic that usually provides a better starting
solution than other methods with a competitive computational time
complexity of (𝑚𝑛), where 𝑚 and 𝑛 in our problem are the number
of classes |𝐶| and the number of instances |𝑆|, respectively (Chaudhuri
et al., 2013). Although VAM does not guarantee an optimal solution,
it yields an optimal or close-to-optimal starting point for small-sized
transportation problems. In the case of large-sized problems, in terms
of the number of samples and classes, an improved version of VAM,
such as IVAM (Korukoğlu and Ballı, 2011), can be employed to obtain
more efficient initial solutions.

4. Experimental study

In the following section, we present the results of our experimental
investigation of the proposed COCF and compare them with the results
obtained using the conventional approach of combining a non-ordinal
classifier with an optimization model (referred to as CNOCF, which
stand for Constraint-based Non-Ordinal Classification Framework). The
methodology will be applied to both tabular and image datasets. For
the tabular dataset, our COCF will utilize an ordinal decision tree and
an ordinal random forest in the first phase, while their corresponding
non-ordinal algorithms will be applied for the purpose of comparison
in the CNOCF. When working with image dataset, we apply an ordinal
neural network in the first phase of the COCF and the corresponding
non-ordinal neural network in the CNCOF. Details about the ordinal
methods can be found in Section 3.2. In all our experiments involving
the ordinal decision-tree based algorithms, we employed a function
𝑣(𝑐𝑖) = 𝑖,∀𝑖. For the ordinal loss function of the neural network and
optimization model, we utilized an ordinal cost matrix 𝑂 as proposed
in Chen et al. (2019), where ∀𝑖, 𝑗 ∶ 𝑂𝑖,𝑗 = 2⋅|𝑣(𝑐𝑗 ) − 𝑣(𝑐𝑖)|+1. This matrix
is designed so that a larger deviation between the actual and predicted
classes reflects errors with more significant consequences. It is worth
noting that subtracting 1 from all values in the ordinal cost matrix, in
order to assign a cost of 0 for correctly classified samples, does not
5

r

impact the classification results but only reduces the overall cost of the
solution. As the framework aims to minimize ordinal misclassification
errors, it is important to note that it may not necessarily optimize other
performance measures (Abukasis et al., 2022). The misclassification
errors will be presented as calculated by,

|𝑆|
∑

𝑠=1

|𝐶|

∑

𝑖=1
𝑅𝑠,𝑖𝑂𝑖,𝑦𝑠 . (7)

Although the proposed framework is designed to yield favorable
rdinal error results, we will also evaluate its capability to produce
ompetitive accuracy results.

.1. Implementation of COCF on tabular dataset

atasets, experimental setup and methods. COCF with the ordinal deci-
ion tree and ordinal random forest algorithms was applied to a publicly
vailable dataset, which can be accessed at https://www.kaggle.com/
atasets/imsparsh/churn-risk-rate-hackerearth-ml.

The dataset contains personal information about users, including
ut not limited to browsing behavior, historical purchase data, and
emographic information. Each user is assigned one among five dis-
rete predictive values on an ordinal scale from 0 to 4, which estimates
heir likelihood of churning at any given time. A value of 0 represents

low probability of churning, while 4 indicates a high probability
f churning. The objective is to forecast the churn score based on
he provided dataset’s features. To prepare the data for analysis, we
erformed data engineering, which involved the removal of instances
ith incomplete data and the removal of features that have a single
alue or a minimal number of distinct values, thereby having a limited
mpact on the target variable. Following this preprocessing stage, the
ataset contained 13,609 training instances and 2,721 test instances.

In our experiments, we explore several scenarios involving con-
traints. Several scenarios focus on users with a maximum risk of
hurning equal to 4 (Class 4), and can potentially be retained only
ith a phone call by team leaders. Here, the constraint is related to the
umber of team leaders available to make these calls. Another scenario
ocus on users with a risk of churning equal to 3 (Class 3), representing
nstable users who can potentially be retained with a simple phone
all by employees. All those scenarios assume a single constraint of

specific resource type. We also explore a scenario that involves
onstraints on two types of resources. In this case, limitations are placed
n users with a risk of churning equal to 2 and 4 simultaneously. Class
users, who are less likely to churn, are used as training calls for

ew employees. However, calls to Class 4 users, who have a higher
ikelihood of churning, are overseen by team leaders. It is important
o note that both new employees and team leaders are constrained
esources.

The ordinal and non-ordinal decision tree-based algorithms were
rained on the training dataset. To select the optimal hyperparameters,
e employed a cross-validation strategy. The training dataset was
artitioned into 5 groups. In each of the 5 iterations, the framework
as trained on 4 of these groups and validated on the fifth. The hyper-
arameters that yielded the lowest mean cost across these 5 validation
uns were then chosen for the subsequent step. Subsequently, the entire
ramework was applied to the test data, resulting in classification re-
ults for each instance. These classifications were made while adhering
o the specified constraints and aimed at minimizing the overall cost.

esults. To emphasize the significance of employing an ordinal model
n conjunction with an optimization model, we offer a comprehensive
omparison of the actual labels versus the predicted labels through
onfusion matrices for both the proposed COCF and CNOCF with the or-
inal decision tree-based algorithms and their non-ordinal counterparts
espectively. Fig. 3 displays these matrices, where the upper matrices
epict results without a resource constraint, while the lower matrices

epresent the outcomes when a constraint is applied to class 4 (i.e., 𝑛4 =

https://www.kaggle.com/datasets/imsparsh/churn-risk-rate-hackerearth-ml
https://www.kaggle.com/datasets/imsparsh/churn-risk-rate-hackerearth-ml
https://www.kaggle.com/datasets/imsparsh/churn-risk-rate-hackerearth-ml
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Fig. 3. Confusion matrices of the actual labels versus the predicted labels for COCF and CNOCF on the tabular dataset, without a resource constraint (upper matrices) and when
applying 1% constraint on class 4.
1%). In the lower matrices, the fifth column (corresponding to class
4) sums to 28, representing the resource limitation of 1% of the test
dataset.

When examining the confusion matrices, it can be observed that
when using COCF, there are fewer cases with significant errors, as
indicated by a distance of two steps or more from the diagonal (repre-
senting correct classification), compared to when applying the CNOCF.
This behavior indicates that COCF takes into account ordinality during
the machine learning phase, resulting in lower cost outcomes compared
to CNOCF. For example, when applying the constraint to class 4 (the
lower matrices), it can be observed that in the non-ordinal approach,
there are 5 instances classified as class 2 instead of class 4, compared to
only 1 instance in the ordinal model. Additionally, among the instances
classified as class 3, there are instances with an actual class from each
of the other classes. This phenomenon occurs because a significant
number of instances were classified as class 3 as a result of the limited
number of instances to be classified into class 4.

Fig. 4 presents the impact of the optimization model on the ma-
chine learning model’s classifications for scenarios without resource
constraints and when a constraint is applied to class 3 (i.e. 𝑛3 = 3%).
The figure shows the percentage of samples whose cost, derived from
the decision tree (DT) and ordinal decision tree (ord_DT) classifications,
was either improved, left unchanged, or worsened by the optimization
model, denoted ‘pos’, ‘equal’ and ‘neg’, respectively. The left pair of
bars depict the results of the decision tree and ordinal decision tree
for the misclassification costs problem without constraints. The right
pair of bars illustrate the results for the misclassification cost problem
under a resource constraint of 𝑛3 = 3%. As expected in the resource
constraint scenario, the percentage of ‘neg’ samples was higher than
6

Fig. 4. Percentage of samples whose cost, derived from the decision tree and ordinal
decision tree classifications, were improved, left unchanged, or worsened by the
optimization model, denoted by ‘pos’, ‘equal’ and ‘neg’, respectively. The left pair
of bars presents the problem without resource constraints, and the right pair of bars
presents the problem under a resource constraint.

the percentage of ‘pos’ instances, unlike the unconstrained problem.
This is because classification changes are necessary to comply with the
resource constraint, even if it results in an increase in cost. It can be
observed that the percentage of ‘pos’ instances in the ordinal decision
tree was higher at 83% compared to the percentage of ‘pos’ instances
in the decision tree (i.e., 6.6% compared to 3.6%). This observation
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Fig. 5. Cost and standard deviation results for the ordinal decision tree and ordinal
random forest, compared to their non-ordinal counterparts for the Class 4 constraint
scenarios of 𝑛4 = 0.5%, 1%, and 1.5%.

is logical as the ordinal decision tree, incorporating the ordinality of
classes during the learning phase, has a higher probability of positive
improvement.

Fig. 5 presents the mean and standard deviation of the cost results
for each model, based on 5 cross-validation runs, under the Class 4
constraint scenarios of 𝑛 = 0.5%, 1%, and 1.5%. It can be observed that
7
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Table 2
Cost and accuracy results obtained by applying COCF and CNOCF on validation datasets
with a five-fold cross-validation, utilizing the ordinal decision tree and non-ordinal
decision tree models respectively. The results of the best framework are highlighted in
bold for each set of constraints.

Set of constraints CNOCF with DT COCF with ord_DT

Cost Acc Cost Acc

No constraints 1.456 0.779 1.438 0.785
𝑛4 = 0.5% 1.717 0.647 1.699* 0.651
𝑛4 = 1% 1.708 0.652 1.69* 0.656*
𝑛4 = 1.5% 1.698 0.657 1.68* 0.66
𝑛4 = 𝑛2 = 0.5% 2.19 0.411 2.17* 0.415*
𝑛3 = 3% 1.614 0.705 1.598* 0.707

* Paired t-test significance at p-value<0.05.

Table 3
Cost and accuracy results obtained by applying COCF and CNOCF on test dataset,
utilizing the ordinal decision tree and non-ordinal decision tree models respectively, in
the first phase of the frameworks. For each set of constraints, the results of the best
framework are shown in bold.

Set of constraints CNOCF with DT COCF with ord_DT

Cost Acc Cost Acc

No constraints 1.44 0.789 1.431 0.789
𝑛4 = 0.5% 1.721 0.647 1.704 0.648
𝑛4 = 1% 1.711 0.652 1.695 0.653
𝑛4 = 1.5% 1.701 0.657 1.687 0.657
𝑛4 = 𝑛2 = 0.5% 2.206 0.404 2.186 0.407
𝑛3 = 3% 1.636 0.697 1.619 0.698

the overlap between the standard deviations for each ordinal decision
tree-based model and its non-ordinal counterpart is minimal, indicating
a consistent finding that the cost is lower in the ordinal models.

Tables 2 and 3 present the cost and accuracy results for both the
COCF with an ordinal decision tree (ord_DT) and CNOCF with a non-
ordinal decision tree (DT), under various constraints for the validation
datasets with five-fold cross-validation and test dataset respectively. For
each set of constraints, the results of the best framework are shown
in bold. For the validation datasets, statistically significant differences
at a 𝑝-value < 0.05 based on paired t-test are indicated by *. In all 6
scenarios, we observed that the COCF with an ord_DT outperformed the
CNOCF with the DT on the validation dataset, both in terms of cost and
accuracy. In 5 of these 6 scenarios, COCF outperformed the CNOCF in
terms of cost with a statistically significant difference (𝑝-value< 0.05).
For the test dataset, in all 6 scenarios, COCF outperformed the CNOCF
in terms of cost.

Similar to Tables 2 and 3, Tables 4 and 5 present the cost and
accuracy results for both the COCF with an ordinal random forest
(ord_RF) and CNOCF with a non-ordinal random forest (RF), under
various constraints for the validation datasets with five-fold cross-
validation and test dataset respectively. For each set of constraints, the
results of the best framework are shown in bold. For the validation
datasets, statistically significant differences at a 𝑝-value < 0.05 based
on paired t-test are indicated by *. In all 5 scenarios, we observed
that the COCF with an ord_RF outperformed the CNOCF with a RF
regarding cost and accuracy with a statistically significant difference (p-
value< 0.05) on the validation dataset. For the test dataset in Table 5,
in all 5 scenarios, COCF outperformed the CNOCF in terms of cost and
in 4 scenarios in terms of accuracy.

Fig. 6(a) compares the costs obtained by the COCF and CNOCF on
a test dataset using the ordinal decision tree (ord_DT) and non-ordinal
decision tree (DT) from Table 3. In Fig. 6(b), a comparison of the
costs obtained by the COCF and CNOCF on a test dataset is presented,
using the ordinal random forest (ord_RF) and non-ordinal random forest
(RF) from Table 5. It can be observed that the COCF with the ordinal
algorithms achieved lower costs than the CNOCF with their non-ordinal
counterparts, resulting in an average cost reduction of 1%.
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Fig. 6. Comparison of COCF and CNOCF cost results on a test dataset using (a) decision tree and ordinal decision tree models, and (b) random forest and ordinal random forest
models, across different sets of constraints.
Fig. 7. The misclassification costs in scenarios without resource constraints for both the training and validation datasets computed over 20 epochs following the classification
phase (using either VGG-19 or ordinal VGG-19) and after applying the optimization model (CNOCF with VGG-19 or COCF with ordinal VGG-19). The stopping epoch is indicated
by the black dashed lines.
Table 4
Cost and accuracy results obtained by applying COCF and CNOCF on validation
datasets, utilizing the ordinal random forest and non-ordinal random forest models
respectively. The results of the best framework are highlighted in bold for each set of
constraints.

Set of constraints CNOCF with RF COCF with ord_RF

Cost Acc Cost Acc

No constraints 1.585 0.724 1.534* 0.744*
𝑛4 = 0.5% 1.805 0.61 1.78* 0.618*
𝑛4 = 1% 1.795 0.615 1.77* 0.623*
𝑛4 = 1.5% 1.785 0.62 1.761* 0.628*
𝑛3 = 3% 1.757 0.654 1.7* 0.671*

* Paired t-test significance at p-value<0.05.

4.2. Implementation of COCF on image dataset

Datasets, experimental setup and methods. In this part, COCF was ap-
plied with an ordinal neural network of VGG-19 type, as presented in
article (Chen et al., 2019), on a publicly available dataset obtained
from the Osteoarthritis Initiative (OAI), and available at https://nda.
nih.gov/oai/. Knee Osteoarthritis (OA) is a frequent cause of limited
activity and physical disability in the elderly population. Early iden-
tification and treatment can potentially slow down its progression,
thereby optimizing the necessary medical interventions. A total of 4796
images of knee bilateral posterior–anterior fixed flexion radiographs
8

Table 5
Cost and accuracy results obtained by applying COCF and CNOCF on test dataset,
utilizing the ordinal random forest and non-ordinal random forest models respectively.
For each set of constraints, the results of the best framework are shown in bold.

Set of constraints CNOCF with RF COCF with ord_RF

Cost Acc Cost Acc

No constraints 1.558 0.742 1.532 0.75
𝑛4 = 0.5% 1.792 0.621 1.772 0.629
𝑛4 = 1% 1.781 0.626 1.763 0.634
𝑛4 = 1.5% 1.772 0.631 1.753 0.639
𝑛3 = 3% 1.737 0.665 1.726 0.658

of 4796 participants exist in the dataset. In our research, we used a
total of 4130 pairs of knee joints, acquired from the OAI repository
and made available by Chen et al. (2019) after a reprocessing stage.
All knee X-ray images were randomly divided into training, validation,
and test datasets at a ratio of 7:1:2. The aim of this experiment was to
categorize patients into five classes, each representing different levels
of OA severity, and then assign these patients to limited treatment
resources based on the classification results. It is assumed that the
cost of incorrectly assigning a patient to treatment is influenced by the
distance between the actual class and the predicted class, as represented
by the ordinal cost matrix 𝑂.

We used the exact epoch selection mechanism to find the ‘‘best’’
trained model in all experiments. The selected epoch is that with a
lower obtained cost (after applying the optimization model) than all

https://nda.nih.gov/oai/
https://nda.nih.gov/oai/
https://nda.nih.gov/oai/
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Fig. 8. The accuracy results in scenarios without resource constraints for both the training and validation datasets computed over 20 epochs following the classification phase
(using either VGG-19 or ordinal VGG-19) and after applying the optimization model (CNOCF with VGG-19 or COCF with ordinal VGG-19). The stopping epoch is indicated by the
black dashed lines.
Fig. 9. Confusion matrices of the actual labels versus the predicted labels for CNOCF and COCF on the images dataset, without a resource constraint (upper matrices) and when
applying 1% constraint on class 4.
previous epochs and without a cost improvement higher than 2.5%
in the following five epochs. In our experiments, we explored two
different scenarios that imposed a constraint on the number of treat-
ments. The first scenario is for patients with severity level 4, denoted
as 4 = 17. This corresponds to 1% of the patients in the considered
dataset (test dataset), which has a total of |𝑆′

| = 1656 patients. This
scenario mirrors a practical real-world situation where a healthcare
9

center needs to prioritize patients in the later stages of the disease,
optimizing the allocation of limited surgery rooms. The second scenario
imposed a constraint on the number of treatments for patients with
severity level 3, where 3 = 50, representing 𝑛3 = 3% of the patients in
the test dataset. This situation mirrors a practical scenario wherein a
doctor may have a limited number of monitoring devices to detect the
deterioration of the disease.
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Fig. 10. Transition matrices of the predicted labels for VGG-19 and ordinal VGG-19 versus the predicted labels for CNOCF with VGG-19 and COCF with ordinal VGG-19, without
a resource constraint (upper matrices) and when applying a 3% constraint on severity level 3 (lower matrices).
Results. In this section, we present the results of COCF with ordinal
VGG-19 to showcase the versatility of using COCF across different types
of datasets and with various ordinal algorithms. Figs. 7 and 8 illus-
trate the influence of the optimization model on the machine learning
model’s classifications in scenarios without resource constraints. As
expected, when utilizing a VGG-19 classifier, Fig. 7(a) demonstrates a
cost improvement for both the training and validation datasets after
applying the optimization model. However, for the ordinal VGG-19
classifier, it is observed from Fig. 7(b), that the optimization model did
not contribute to a further enhancement in the cost results. Fig. 8(a)
presents that for both the training and validation datasets, the accuracy
is lower when using the optimization model (which aims to minimize
cost) compared to using only the VGG-19 classifier. In Fig. 8(b), it is ob-
served that when using the ordinal VGG-19 classifier, the optimization
model did not significantly affect the accuracy results, particularly on
the training dataset, similarly to the cost results in Fig. 7(b). The black
dashed lines in the graphs indicate the selected epochs determined
by the stopping mechanism. The models trained at these epochs were
saved and utilized for the test datasets.

Fig. 9 displays the confusion matrices comparing the actual labels
with the predicted labels for COCF vs. CNOCF, both without resource
constraints (upper matrices) and when a constraint is applied to limit
the number of treatments for patients with severity level 4, denoted
as 𝑛4 = 1% (lower matrices). The fifth column (representing severity
level 4) of the lower matrices sums to 17, which corresponds to 1% of
the patients in the considered dataset (test dataset). Using these con-
fusion matrices, we conducted further analyses to assess whether the
utilization of the ordinal learning model, in contrast to the non-ordinal
learning model, results in improved classification outcomes with re-
duced costs. These improved starting conditions are advantageous for
the subsequent optimization model, which refines the classification to
10
adhere to the constraint, ultimately leading to better results. From the
upper matrices, it can be observed that while CNOCF with the VGG-
19 achieved an accuracy of 62.7% and a cost of 3118, COCF with the
ordinal VGG-19 achieved an accuracy of 64.7% and a cost of 2978,
representing an 4.5% cost reduction. It is also worth noting that when
using COCF with the ordinal VGG-19, there were 75 cases with signif-
icant errors, as indicated by a distance of two steps or more from the
diagonal (representing correct classification), compared to 110 when
applying CNOCF with the non-ordinal VGG-19. With the constraint in
place, several instances initially classified as class 4 were changed to
class 3 to meet the constraint. Specifically, 19 instances were altered
when applying COCF, with 5 of them correctly classified as Class 3. On
the other hand, 15 instances were changed when applying CNOCF, with
4 of them correctly classified as class 3. Similar differences in results
were observed in the lower matrices, with an accuracy of 62.3% and a
cost of 3132 when applying CNOCF, and an accuracy of 64.1% and a
cost of 2996 (representing a 4.3% cost reduction) when applying COCF.

In Fig. 4, we explored for the tabular experiment the impact of
the optimization model on the machine learning model’s classifications
via the calculation of the percentage of improved, unchanged, and
worsened changes. In this experiment, we will investigate in detail
the number of changes between each pair of classes. Fig. 10 presents
the transition matrices of the predicted labels of the machine learning
algorithm versus the predicted labels after the optimization model,
without a resource constraint (upper matrices) and when applying a
constraint on the number of treatments for patients with severity level
3, i.e., 𝑛3 = 3% (lower matrices). The fourth column (representing
severity level 3) of the lower matrices sums to 25, equaling 3% of the
validation data set. These matrices show how the optimization models
influence the machine learning results. According to Fig. 10, constrain-
ing matrices (a) and (b) results in matrices (c) and (d), respectively,
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which alters the classification of instances by categorizing them as 2 or
4 to conform to the restriction on class 3. It can be observed that the
number of changes between classes by the optimization model is 25%
and 29% higher when using the non-ordinal VGG-19 compared to when
using the ordinal VGG-19 for the scenarios without constraints and with
the constraint of 𝑛3 = 3%, respectively. This insight is rational since
ordinal VGG-19 takes into account the ordinality of classes already in
the learning phase.

5. Conclusion

We introduce a framework that integrates an ordinal machine learn-
ing algorithm with an optimization model to address ordinal classifi-
cation problems under resource constraints. We illustrated the equiv-
alence between the formulation of the resource allocation problem
into samples and the transportation problem, enabling the utilization
of established transportation heuristics for our solution. Moreover,
we demonstrated that the characteristics of the problem formulation
facilitate the identification of a solution with integer variables. Our
experiments demonstrate that this combined framework, which utilizes
both an ordinal machine learning algorithm and an optimization model,
consistently outperforms its non-ordinal counterpart in various con-
straint scenarios. This is shown in the case of both tabular and image
datasets, where we employ ordinal decision tree-based models and or-
dinal neural networks. These experiments consistently demonstrate the
superiority of our proposed framework with ordinal models, resulting
in an average cost reduction of 1% for the ordinal decision tree-based
models and 4.4% for the ordinal neural networks. The experiments also
revealed that, as ordinal classifiers consider the ordinality of classes
during the learning phase, the optimization model did not contribute
to a further improvement in the cost results in the scenario without
resource constraints. Additionally, there were much lower classification
changes when using the ordinal classifiers compared to the non-ordinal
classifiers. Future research direction can explore ensemble algorithms
combining ordinal and non-ordinal models to improve cost results.
Another potential research direction could explore the applicability
of the proposed framework to other ordinal classification problems
involving diverse datasets, including text, audio, or EEG signals (Haba
et al., 2023). It would also be interesting to explore the utilization
of the classification changes performed by the optimization model to
implement adaptive learning of the ordinal learning classifier, which
has recently been investigated to address local training-test class dis-
tribution mismatch and resource constraints in a binary classification
problem (Shifman et al., 2023; Volk et al., 2023; Volk and Singer,
2023).
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