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Abstract14

In this paper we consider the k-server problem where events are generated by selfish agents, known15

as the selfish k-server problem. In this setting, there is a set of k servers located in some metric16

space. Selfish agents arrive in an online fashion, each has a request located on some point in the17

metric space, and seeks to serve his request with the server of minimum distance to the request. If18

agents choose to serve their request with the nearest server, this mimics the greedy algorithm which19

has an unbounded competitive ratio. We propose an algorithm that associates a surcharge with20

each server independently of the agent to arrive (and therefore, yields a truthful online mechanism).21

An agent chooses to serve his request with the server that minimizes the distance to the request plus22

the associated surcharge to the server.23

This paper extends [9], which gave an optimal k-competitive dynamic pricing scheme for the24

selfish k-server problem on the line. We give a k-competitive dynamic pricing algorithm for the25

selfish k-server problem on tree metric spaces, which matches the optimal online (non truthful)26

algorithm. We show that an α-competitive dynamic pricing scheme exists on the tree if and only if27

there exists α-competitive online algorithm on the tree that is lazy, local, and monotone. Given this28

characterization, the main technical difficulty is coming up with such an online algorithm.29
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10:2 Dynamic Pricing of Servers on Trees

1 Introduction40

Online algorithms were designed to deal with cases where the input arrives piecemeal over41

time and consists of a sequence of events. Problems such as paging, online matching, online42

scheduling, etc., are all examples of such problems.43

This paper, belongs to a thread of recent research where events are selfish and the goal is44

to set surcharges on the various decisions that can be made by the agent with some desirable45

goal in mind such as minimizing social cost, makespan, completion time, flow time, sum of46

completion times, etc. (See Section 1.1 for some examples.) The prices may change over time,47

but must be known to the selfish agent upon arrival so that the agent can make an informed48

decision. Truthfulness is immediate in such settings, the agent gets asked no questions and49

therefore cannot lie about anything. The agent simply takes the utility maximizing (disutility50

minimizing) option available.51

Specifically, in the dynamic pricing scheme for the k-server problem that we consider, the52

mechanism sets a surcharge on each server prior to an arrival of the next request. The agent53

that issues the request greedily chooses the server which minimizes the distance between the54

server and request plus the surcharge for the server. Note that the mechanism may update55

the surcharge of the servers based on past requests.56

This paper extends the dynamic pricing results obtained for the k-server problem in [9]57

and deals with servers on a tree rather than restricted to a line. Although the basic idea is58

the same: use dynamic pricing to “nudge” selfish agents to act as though they were under59

the control of a centralized online algorithm, the tree metric is much more challenging to60

deal with than the line.61

We show that any α-competitive online algorithm on the tree that is simultaneously (i)62

lazy: moves at most one server, (ii) local: a request at a point occupied by one or more63

servers is served by one of these servers, and (iii) monotone: the set of points serviced by a64

server is contiguous, can be converted into a dynamic posted pricing scheme for the selfish65

k-server problem on the tree with a competitive ratio of α. These properties were defined66

and in fact proved for the line [9], but they extend naturally to trees; cf. Section 2.2 for67

formal definitions. Thus, the main challenge in this paper is to give a k-competitive k-server68

algorithm for the tree that is lazy, local, and monotone.69

In the work of Cohen et al. [9], the main idea for obtaining an algorithm with those70

properties on a line is to run a simulation of the Double Cover (DC) algorithm and serve each71

request (at point) r with a server that is adjacent to r (i.e., there are no intermediate servers72

on its path to r) and that can be matched to a simulated Double Cover server which serves73

r in a min cost matching. This maintains the competitive ratio and ensures laziness, locality74

and monotonicity. Generalizing this idea to trees is not immediate. In particular, choosing75

an arbitrary server adjacent to the request which can also be matched to a simulated server76

in a min cost matching results in non-monotonicity, which cannot be priced. This means77

that one needs a deeper understanding of the tree topology in deciding which of the servers78

is to serve the request (We explain this in detail in Section 2.2).79

1.1 Related Work80

1.1.1 Dynamic Pricing Schemes and Online Mechanisms81

Lavi and Nisan [18] initiated the study of competitive analysis of incentive compatible online82

auctions. In particular, they give an incentive compatible on-line auction for many identical83

items with a tight competitive ratio. They consider both revenue and social welfare targets.84
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Awerbuch, Azar, and Myerson [1] give a general scheme that produces posted prices85

for general combinatorial auctions, with a competitive ratio equal to the logarithm of the86

ratio between highest and lowest prices, times the underlying competitive ratio for the87

combinatorial auction.88

Although not explicitly stated as a pricing scheme, [14] effectively gives a dynamic pricing89

scheme for 2 servers in any metric space. Dynamic pricing was used in the context of packets90

with values and deadlines [12] with the goal of maximizing social welfare. Dynamic subsidies91

were introduced in [6] in the context selfish agents and facility locations. In [9] selfish agent92

versions were introduced for metrical task systems [4], for the k-server problem [19] on the93

line, and for metrical matching [15] on the line, and appropriate dynamic pricing schemes94

were described for reducing social cost. Dynamic pricing for scheduling selfish agents on95

related machines to minimize makespan were studied in [11]. In [13] dynamic prices were96

used to give a good approximation to the maximal flow time. In [10] dynamic prices were97

used to approximate the sum of weighted completion times. Many problems and extensions98

remain open.99

1.1.2 The k-server problem100

The k-server problem was introduced by Manasse et al. [19] as a far reaching generalization101

of various online problems. The best-studied of those is the paging (caching) problem, which102

corresponds to k-server problem on a uniform metric space. Sleator and Tarjan [20] gave103

several k-competitive algorithms for paging and proved that this is the best possible ratio for104

any deterministic algorithm.105

The famous k-server conjecture of Manasse et al. [19] hypothesizes that the k-server106

problem is no harder in other metric spaces, i.e., that k is the optimal ratio for deterministic107

algorithms in general metrics. A lower bound of k holds in any metric space of at least108

k + 1 points [19], and a nearly matching upper bound of 2k − 1 was given for the Work109

Function Algorithm (WFA) by Koutsoupias and Papadimitriou [17], which remains the best110

known algorithm for general metrics. The conjecture has been settled (exactly) for several111

special metrics. In particular, Chrobak et al. [7] gave an elegant k-competitive algorithm for112

the line metric, called Double Coverage (DC), which was later extended and shown to be113

k-competitive for all tree metrics [8]. Additionally, Bartal and Koutsoupias have shown that114

WFA is k-competitive for the line, the star, and all metric spaces with k + 2 points [3].115

Moreover, Bansal et al. [2] have recently shown that the exact competitive ratio of the116

DC algorithm, which we simulate by dynamic pricing scheme, when it uses k servers but the117

offline optimum uses only h ≤ k servers is k(h+1)
k+1 . (For such setting, the general lower bound118

is k
k−h+1 [19], which is matched only for the special case of paging [20].)119

Most results on the k-server problem can be found in the survey by Koutsoupias [16].120

Due to our focus, we ignore the randomized variant, on which there is significant recent121

progress [5].122

1.2 Roadmap to this Paper123

The next section, Section 2 gives the model and sufficient condition to give of competitive124

pricing algorithms on trees. We show that any algorithm that is lazy, local, and monotone125

can be used to derive a dynamic pricing scheme, and that a dynamic pricing scheme implies126

that such an algorithm must exist. Section 3 gives an algorithm that is clearly lazy, local127

and monotone, but it remains to show that all points on the tree are associated with some128

server, i.e., that the algorithm is well defined. This is shown in Section 4. In Section C (in129

APPROX/RANDOM 2019



10:4 Dynamic Pricing of Servers on Trees

the Appendix) we show that the algorithm of Section 3 can be implemented in polynomial130

time. The Appendix also contains full proofs of various claims.131

2 The Model and Preliminaries132

2.1 The Selfish k-server problem133

In this problem, there is a set of k-servers located in some metric space defined by an134

undirected weighted tree T = (V,E,w). A sequence of selfish requests σ = 〈σ1, σ2, . . . , 〉135

arrives online, where each request is issued at some point in the metric space. Before an136

arrival of each request, a dynamic pricing scheme sets a surcharge (price) on each server,137

and the arriving request chooses to be served by the server s that minimizes the sum of the138

distance of s from the request and the surcharge on s; the server s is then moved to the139

request. The dynamic pricing scheme’s objective is to minimize the total distance moved by140

all servers.141

Formally, given a request sequence σ = 〈σ1, σ2, . . . , σT 〉, each of the requests must be142

served by one of the k servers, let ` = 〈`1, `2, . . . , `T 〉 denote the solution sequence, where143

`i ∈ {1, . . . , k} is the index of the server which serves the i-th request. Define the event prefix144

σ≺t to be the sequence of events up to but not including event t: σ≺t = 〈σ1, σ2, . . . , σt−1〉 .145

The servers location after request t is: si(σ≺t+1) = si(σ≺t) for i 6= `t and s`t(σ≺t+1) = σt.146

Let si(σ≺1) denote the initial server location.147

The cost of serving σ by the solution sequence ` is

COST(σ, `) =
T∑

t=1
dist(σt, s`t(σ≺t)).

In the selfish setting, the server that serves the request σt in step t is chosen so as to
minimize the distance of σt to the server’s current location plus the surcharge function
c : σ≺t × {1, . . . , k} 7→ R+ (i.e., c depends only on past events). The chosen server is:

`c
t ∈ arg mini dist

(
σt, si(σ≺t)

)
+ c(σ≺t, i).

Let `c = 〈`c
1, . . . , `

c
t〉 be the (solution) sequence of server indices chosen by the selfish

requests σ, and let `∗ = 〈`∗1, . . . , `∗t 〉 be the servers that minimize the total cost for σ. A
pricing scheme c is α-competitive if for any σ:

COST(σ, `c)
COST(σ, `∗) ≤ α.

2.2 A Sufficient Condition for Competitive Pricing Algorithms on trees148

In this paper, we focus on tree metrics, where given a weighted tree T = (V,E,w), we define149

a tree metric space to include the vertices of T along with all points along the edges of T150

(see Fig. 3a in Appendix 5). Given two points a, b ∈ T , we denote by P[a, b] the [unique]151

path between a and b including both endpoints. We use dist(a, b) to denote the distance152

between a and b defined by the metric. We also use P(a, b] to denote the path from a to b153

that is open at a and closed at b.154

We avoid reasoning about prices by describing how any online algorithm of a certain form155

can be converted into a dynamic pricing scheme that nudges the [upcoming] selfish agent do156

exactly as the online algorithm.157

We use the following three properties. We say that an online algorithm is158
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1. lazy if it moves at most one server,159

2. local if some point p has one or more servers on it, then a request at p will be served by160

one of these servers.161

3. monotone if, for any two requests that the algorithm would service by the same server162

(for the next request to arrive), it is also true that a request at any point along the (tree)163

path connecting the requests would also be serviced by the same server.164

B Observation 1. Any algorithm that is local and monotone has the following property: if165

server i, at si serves a request at r then there is no other server along the path P(si, r].166

The following lemma shows that any α-competitive algorithm that satisfies the above167

three properties can be translated into a dynamic pricing scheme with the same competitive168

ratio. We sketch the proof below for a “degenerate” case, and we defer the full proof to169

Appendix B.170

I Lemma 2. Given a lazy, local, and monotone online algorithm for the k-server problem171

on tree metrics, with a competitive ratio of α, there is a dynamic pricing scheme for the172

k-server problem on tree metrics, with the same competitive ratio.173

Proof sketch. Just before the arrival of some request σt (and after serving σ≺t), every server174

s has an associated subtree Ts of points such that for every point p ∈ Ts if the next request175

were made at p, then s would serve it; we say that s is responsible for Ts (breaking ties176

lexicographically in case multiple servers are at a request’s location). These subtrees partition177

the whole tree metric, i.e., they are disjoint and their union is the entire tree.178

First, we set the price for servers for which Ts = ∅ at ∞. Next, we observe that when179

setting the surcharges it is sufficient to consider just the endpoints of the subtrees. We say180

that two non-empty subtrees, Ts and Ts′ , are touching at an endpoint p if there is no server181

s′′ such that in the paths from s to p and from s′ to p in T contain a point q( 6= p) ∈ Ts′′ .182

Note that there may be many mutually touching subtrees.183

Consider a maximal collection of non-empty subtrees Ts1 , Ts2 , . . . , Tsk
, which pairwise184

touch at an endpoint p. (Clearly, p belongs to one of those subtrees.) The key observation185

is that a selfish agent requesting service at p must be indifferent between choosing any of186

the servers s1, . . . , sk. This induces a set of linear equations giving the difference in the187

surcharges, c(si)− c(sj),188

dist(si, p) + c(si) = dist(sj , p) + c(sj) for all 1 ≤ i < j ≤ k189

⇒ c(si)− c(sj) = dist(sj , p)− dist(si, p) for all 1 ≤ i < j ≤ k. (1)190

The relationship of subtrees “touching" can itself be described as a tree, so the equations191

above (1) can all be simultaneously satisfied. Any solution gives the prices we need. J192

The above argument is incomplete, as when subtrees touch at tree vertices, or at at a193

server’s location, the selfish request may deviate from the prescribed behavior of the algorithm.194

This issue can be treated easily by “nudging” the subtrees to avoid these phenomena. More195

on this in Appendix B.196

We remark that it not necessarily true that a lazy, monotone, and local algorithm can197

be obtained from a pricing scheme. In particular, price all servers but one at ∞, this is a198

pricing scheme (albeit a terrible competitive ratio) but contradicts locality.199

How to find a lazy, local and monotone algorithm.200

Any non-lazy algorithm can be trivially transformed into a lazy algorithm simply by201

delaying the motion of a server that is not serving a request. However, this may contradict202

APPROX/RANDOM 2019



10:6 Dynamic Pricing of Servers on Trees

Observation 1, so to preserve monotonicity we must compromise locality. Rather than simply203

follow the simulation. We do as in [9]1, one may move any server matched to the simulated204

server in a min cost matching — this is guaranteed to preserve the competitive ratio. We205

show below that Locality and Monotonicity can be preserved by choosing an appropriate206

matching.207

Given an online algorithm A and a set of requests σ, let cost(A, σ) be the cost of A for208

serving σ.209

I Lemma 3 ([9], Lemma 4.3). Let ON be an online algorithm, let on≺t
i be the location of210

server i after ON serves requests σ≺t, and let LAZY be an algorithm that serves request σt by211

the server ` which is matched to σt in an arbitrary min-cost matching between {on≺t+1
i }i∈[k]212

and s≺t, where the latter is a vector of locations of LAZY’s servers after serving σ≺t. Then213

cost(LAZY, σ≺t) ≤ cost(ON, σ≺t) for every t.214

The above lemma suggests a natural approach to find an algorithm with the three desired215

properties. The approach is to simulate an algorithm that does not satisfy these properties (in216

our case, the Double Cover algorithm discussed in Section 2.4), and whenever the simulated217

algorithm serves the request with one of its simulated servers, choose a real server that is218

matched to the simulated server in a min-cost matching. While this solution produces a lazy219

and local algorithm with the same competitive ratio, it is not a-priori clear if such a server220

can be chosen in a way that results in a monotone algorithm. We show that for the Double221

Cover algorithm, this can indeed be done.222

2.3 Characterization of min-cost matching on trees223

We now give a full characterization of min-cost matchings on trees. As mentioned, the224

matching between two sets of points P and Q (|P | = |Q|) in a tree metric T is more involved225

than in a line, as given a point p ∈ P , there can be multiple points in Q local to p that can be226

matched to p in a min-cost matching between P and Q. Figure 1 contains a simple example.227

In order to characterize the min-cost matching we use the following definition to “cut” a228

tree T at point x to two trees: Tx(p), T x(p), where p ∈ Tx(p). Formally,229

I Definition 4. Given a tree T and two distinct points p, x ∈ T , let Tx(p) be the subtree that230

contains p and does not contain x when splitting T into two subtrees at point x. Let T x(p)231

be T \ Tx(p).232

We define the lowest common ancestor of two points p and q in the tree when rooted at233

point r.234

I Definition 5. The lowest common ancestor of two points p, q with respect to a point235

r, as LCAr(p, q) = argmaxx∈T {dist(x, r) : x ∈ P(p, r) ∩ P(q, r)}.236

The following Lemma gives necessary and sufficient conditions for a point p ∈ P to be237

matched to q ∈ Q in some min cost matching.238

I Lemma 6. Let P and Q be two sets of points in T such that |P | = |Q|, and let p ∈ P239

and q ∈ Q. Then there exists a min-cost matching M : P → Q that matches p to q if and240

only if the following holds — when considering every point x 6= q on the path from p to q,241 ∣∣T x(q) ∩ P
∣∣ > ∣∣T x(q) ∩Q

∣∣.242

1 Originally shown for the line, but the proof works for any metric space, which we show in Appendix A
for completeness.
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The following structural lemma is used in our proofs (we defer both proofs to Appendix D).243

I Lemma 7. Let P , Q be two sets of points in T (|P | = |Q|). For points q, r ∈ T , let Tr(q)244

be a sub-tree such that |Tr(q) ∩ P | > |Tr(q) ∩Q|. Then there exists p ∈ Tr(q) ∩ P such that245

for all x ∈ P(p, r) ,
∣∣T x(r) ∩ P

∣∣ > ∣∣T x(r) ∩Q
∣∣.246

2.4 The Double Cover algorithm247

In order to achieve an optimal deterministic bound, our surcharge algorithm simulates the248

Double Cover (DC) algorithm on trees [8]. In [8], the following was shown.249

I Theorem 8 ([8]). The Double Cover algorithm is k-competitive.250

The algorithm roughly works as follows: When a request is issued at some point r, move251

all the servers that “see" r (have no other server on the path to r) at the same speed until252

either (i) a server d is blocked by another server c that moves towards r, in which case d253

no longer “sees" r and will cease moving towards r (and all servers that see r will continue254

moving towards r), or (ii) a server d reached r’s position, in which case, the servers stop255

moving, and d serves r.256

We use the following notation throughout the paper. The locations of the Double Cover257

servers, dci(σ≺t) ∈M , i = 1, . . . , k, determine the “area of responsibility” for every Double258

Cover server: should some request occur at point p ∈ M , there is at least one server i at259

dci(σ≺t) that will be used by the Double Cover algorithm to serve the request at p. If the260

time t and requests σ≺t = σ1, . . . , σt−1 are fixed, we can simplify notation as follows:261

si = si(σ≺t), i = 1, . . . , k,262

S = 〈s1, . . . , sk〉263

dci = dci(σ≺t),264

DC = 〈dc1, . . . , dck〉265

dci(r) = dci(σ≺tr) r ∈ T,266

DC(r) = 〈dc1(r), . . . , dck(r)〉.267

In [9], we showed that for the line metric, exactly one of the two adjacent real servers268

to the request can be matched to the simulated server at the request (Lemma 4.2 in [9]).269

Moreover, if we use DC on the line as ON, serving the request σt using the adjacent real270

server that is matched to σt recovers monotonicity (Lemma 4.4 in [9]). For the case where271

the underlying metric is a tree, this is much more involved, as there can be multiple adjacent272

real servers that can be matched to σt in a min cost matching, and choosing the wrong one273

might result in a violation of monotonicity, as shown in Figure 1. In Section 3, we define a274

binary relation �r on pairs of servers that can serve a request at point r such that if i �r j,275

then server i cannot cause a monotonicity issue with respect to server j (more on that in276

the relevant section). Since �r is a strict order(see Lemma 16), there exists a server that is277

maximal with respect to �r, and using this server would not cause monotonicity issue.278

The following property on the movement of the double cover servers on trees that is used279

to prove the correctness of our algorithm. We defer the proof of the Lemma to Appendix ??.280

I Lemma 9. For any DC server dci, and any point r ∈ T : If dci does not serve the request281

at r(dci(r) 6= r), then for any p /∈ Tr(dci) we have P[dci, dci(p)] ⊆ P[dci, dci(r)].282

Proof. Consider the trail of a DC server moving in response to a request. Observe that283

every point along the trail was closer to the (former) location of the DC server than to the284

APPROX/RANDOM 2019



10:8 Dynamic Pricing of Servers on Trees

(former) location of any other DC server. That is:285

For all dcj , r ∈ T, for every q ∈ P(dcj , dcj(r)], dist(dcj , q) < dist(dcz, q) for all z 6= j. (2)286

Let dcj(r, t) be the position of server j after a movement of at most t units for a request287

r, or the maximum movement the server can make if it is blocked before moving t unites. Let288

tj(r) be the distance traversed by dcj for the request r, i.e., tj(r) = dist(dcj , dcj(r)). Since289

p /∈ Tr(dci), the following holds:290

For all dcj ∈ Tr(dci), t′ ≤ tj(r) : P[dcj , dcj(p, t′)] ⊆ P[dcj , dcj(r, t′)]. (3)291

We will prove that ti(p) ≤ ti(r) and by (3) the condition holds. Let b be the DC server292

that blocks i, i.e. dcb(r, ti(r)) ∈ P(dci(r, ti(r)), r), and let y = dcb(r, ti(r)).293

Case 1: dcb ∈ Tr(dci) and tb(p) ≥ ti(r). By (3), dcb(p, ti(r)) = y ∈ P(dci(p, ti(r)), p), so294

dcb block dci at ti(r) when the request is at p.295

Case 2: dcb ∈ Tr(dci) and tb(p) < ti(r). Let dc` the server which blocked dcb, by (2) we296

have dc`(p, tb(p)) /∈ P(dcb, y). Hence, dc`(p, tb(p)) ∈ P(y, p) ⊆ P(dci(p, tb(p)), p) so dc` block297

dci at tb(p) < ti(r) when the request is at p.298

Let x = LCAp(r, dcb) and txb = dist(tb, x). Note that if dcb /∈ Tr(dci) then txb ≤ ti(r).299

Case 3: dcb /∈ Tr(dci) and tb(p) ≥ txb . Hence, dcb(p, txb ) = x and x ∈ P(r, p) ⊆300

P(dci(p, txb ), p) so dcb blocks dci at txb ≤ ti(r) when the request is at p.301

Case 4: dcb /∈ Tr(dci) and tb(p) < txb . Let dc` the server which blocked dcb. By (2),302

dc`(p, tb(p)) /∈ P(dcb, x) hence dc`(p, tb(p)) ∈ P(x, p) ⊆ P(dci(p, txb ), p) so dc` blocks dci at303

tb(p) < ti(r) when the request is at p.304

J305

3 An Algorithm for Dynamic Pricing on Trees306

We now present a lazy, local and monotone k-competitive algorithm. This is a “new" (optimal)307

algorithm for the k-server problem on trees. As mentioned, our goal is to find a region308

for each server, such that for any request in the region, there exists a min cost matching309

which matches the server to the dc server at the request (after the movement of the dc310

servers). Note that, for some requests more than one server can be matched to the request.311

Figure 1 contains a simple example. Moreover, the figure shows that the naïve approach that312

matches an arbitrary “adjacent” real server to the DC server serving the request produces313

non-monotonicity. We need to select the real server to move more carefully—this is the314

purpose of the precedence relation, �r.315

Recall the the definition of a lowest common ancestor (LCA) (Definition 5). We now316

define the precedence relation that is used to determined which of the servers in the min-cost317

matching to the DC server that serves the request can be used to serve the request. Roughly318

speaking, a server i precedes server j with respect to point r (i �r j) if, when inspecting the319

LCA of i and j with respect to point r, there is a DC server ` that comes from j’s subtree320

and leaves the LCA towards r. The intuition behind this definition is as follows. Suppose we321

choose j as the server that serves r (when j is in the min-cost matching to the DC server322

that serves r). If the request is at a point r′ further away from r, DC server ` might not323

leave the LCA, preventing server j from being in a min-cost matching to the DC server that324

serves the request at r′, which might result in non-monotonicity. This situation is exactly325

the one depicted in Figure 1.326
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I Definition 10. We say that server i �r j (i has higher priority than j with respect to r) if
(i) LCAr(si, sj) 6= sj, and (ii) there exists some DC server ` such that:

LCAr(si, sj) ∈ P[dc`, dc`(r)] and dc` ∈ TLCAr(si,sj)(sj).

I Definition 11. We define

MC(r) = {` : ∃ min-cost matchingM : S→ DC(r) such thatM(s`) = r}

to be the set of servers that can be matched to the DC server serving the next request located327

at r.328

I Definition 12. A point r ∈ T is `-colorable for some server `:329

1. There is no server j 6= ` such that sj ∈ P(s`, r].330

2. ` ∈ MC(r).331

3. There is no server j such that j ∈ MC(r) and j �r `.332

The intuition behind the above definition is that Property 2 ensures that the conditions333

for Lemma 3 hold and thus the algorithm is k-competitive. If Property 1 did not hold then334

the algorithm would not be local. Finally, Property 3 ensures that the algorithm is monotone335

and well-defined, as we will show. See Figure 2 in Section 5 for illustrations of the various336

definitions made above.337

Our algorithm is described in Algorithm 1. We remark that it is not obviously poly-time.338

In particular, it may not be clear how Ri’s can be computed efficiently. However, we describe339

how to implement the algorithm in poly-time in Appendix C.340

Algorithm 1 The Local Regions algorithm (see Fig. 3 in Appendix 5) for illustration.
Input: A tree metric T , initial servers locations 〈s1(∅), . . . sk(∅)〉 ∈ Mk, and an online
sequence of requests σ ∈ T ∗.

1. After serving σ≺t, before the current request σt is revealed:
a. Initialize the forest F 0 ← T

b. For i = 1, . . . , k:
i. Ci ← {p ∈ F i−1 : p is i-colorable}

# Ci is the set of points that are i-colorable in the current forest F i−1.
ii. Ri ← { p ∈ Ci : for all q ∈ P(p, si), q ∈ Ci }

# Ri is the monotone region of Ci around the location of server i.
iii. F i ← F i−1 \Ri

# Fi is the remaining forest after removing Ri.
2. Let σt be the current request, and let ` ∈ [k] be the server such that σt ∈ R`

Serve σt with server `
dct+1 ← DC(dct, σt)

We say that our algorithm is well defined if for every sequence σ≺t, for every point x ∈ T ,341

there exists a server i such that x ∈ Ri.342

I Theorem 13. There exists a dynamic pricing scheme for the selfish k-server problem on343

trees with an optimal competitive ratio of k.344

Proof. Assuming Algorithm 1 is lazy, local, monotone and well defined, it can be simulated345

by a pricing scheme by Lemma 2 and it is k-competitive by Lemma 3, because a point r ∈ T346
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Figure 1 In order to maintain double cover’s (DC) competitive ratio, we want to serve each
request with a real server that “sees” the request (has no intermediate real servers along the path to
the request), and is matched to a DC server that serves the request in a min cost matching between
the real servers and the simulated DC servers. Unfortunately, choosing an arbitrary real server that
is matched to the DC server might violate monotonicity. In the figure above DC servers are depicted
by squares, namely a, b, c, and real servers by circles, namely 1, 2, 3. Figure I depicts the initial
configuration. We consider two possible locations of the next request, r, p. If the next request is at r,
depicted in Figure II, then after the DC servers move, server a which served the request can either
be matched to the green(2) server (Figure IV ), or to the blue(1) server (Figure V ) in the min-cost
matching. If one chooses to serve the request with the blue(1) server, then it violates monotonicity.
This is since if the next request in the initial configuration is on p (Figure III) instead, then the
unique min-cost matching matches the green(2) server to server b. Finally, note that in the initial
configuration r is not blue(1) colorable. According to Definition 12, properties 1 and 2 hold for the
blue(1) server, but property 3 does not since (2) ∈ MC(r) and (2) �r (1) (DC server a traverses
LCAr(1, 2) and ‘arrives’ from the blue(1) server subtree).

is served by server ` only if r is in R`, and therefore r is `-colorable, which implies ` ∈ MC(r).347

The `-colorability (property 1) of r further implies locality of the algorithm, whereas its348

laziness follows by definition. The monotonicity of the algorithm follows by step 1(b)ii of349

Algorithm 1, since the region contains only points p such that all other points on the path350

from p to the server are also in the region of the server2. To conclude the proof, Lemma 14351

below implies the algorithm is well-defined. J352

4 Algorithm 1 is Well Defined353

In this section, we show that Algorithm 1 is well defined, i.e. that every point in the tree354

would be in some server’s region, concluding the proof of Theorem 13. To help the reader355

in following this section, various figures, depicting important lemmas of this section, are356

presented in Figure 4 of Section 5.357

I Lemma 14 (Well-Defined Lemma). For any sequence σ, Algorithm 1 is well-defined.358

2 We note that Ci itself might not be continuous, and therefore, step 1(b)ii is needed in order to ensure
monotonicity.
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We use the following observation:359

B Observation 15 (See Figure 4a). From the definition, we observe that for every r, p, q in T360

(r 6= p):361

(1) For q ∈ Tr(p), we have: x ∈ Tr(p) ⇐⇒ r /∈ P[x, q].362

(2) For q /∈ Tr(p), we have: x ∈ Tr(p)⇒ r ∈ P[x, q].363

In order to prove Lemma 14, we first show that the relation �r is a strict partial order.364

I Lemma 16. �r is a strict partial order relation for every r ∈ T .365

Proof. In order to show that �r is a strict partial order relation, we need to show it is366

irreflexive and transitive. (Note that these two properties imply asymmetry.) Since it is clear367

that �r is irreflexive (LCAr(sj , sj) = sj for every r ∈ T and j), we show that it is transitive.368

Assume that i �r j and j �r `, we prove that i �r `. Let Li,j = LCAr(si, sj) and369

Lj,` = LCAr(sj , s`) and Li,` = LCAr(si, s`). Let dci,j and dcj,` be the respective dc servers370

which order the servers, i.e., Li,j ∈ P[dci,j , dci,j(r)] and dci,j ∈ TLi,j
(sj), and Lj,` ∈371

P[dcj,`, dcj,`(r)] and dcj,` ∈ TLj,`
(s`).372

Case 1. Li,j ∈ P[Lj,`, r], hence Li,` = Li,j and TLi,j (sj) = TLi,j (s`), and therefore373

Li,` ∈ P[dci,j , dci,j(r)] and dci,j ∈ TLi,`
(s`). By Definition 10 i �r `.374

Case 2. Lj,` ∈ P[Li,j , r], hence Li,` = Lj,` and therefore Li,` ∈ P[dcj,`, dcj,`(r)] and375

dcj,` ∈ TLi,`
(s`). By Definition 10 i �r `. J376

This allows us to conclude that every point in the tree T is colorable by some server.377

I Lemma 17. For any r ∈ T , there exist j such that r is j-colorable.378

Proof. Consider a point r ∈ T . Recall that MC(r) is the set of servers the can be matched379

to r in a min-cost matching between S and DC(r). Since �r is a strict order relation (by380

Lemma 16), there is a server ` ∈ MC(r) that is maximal with respect to �r in MC(r), i.e.,381

such that for every server j ∈ MC(r), j �r `. Hence, there is a server ` for which Properties 2382

and 3 of `-colorability hold.383

Let ` be a server for which Properties 2 and 3 hold. If there is no other server in P(s`, r],384

then Property 1 holds as well and r is `-colorable. Otherwise, we claim that every for server385

in P(s`, r] Properties 2 and 3 hold. Since for the closest server to r in P(s`, r], j, Property 1386

holds as well, it follows that r is j-colorable.387

Let ` be a server in MC(r) which is maximal with respect to �r. Let j be a server for388

which sj ∈ P(s`, r]. Since the path from sj to r is a subpath of the path from s` to r, and389

since for every x ∈ P[sj , r], T x(sj) = T x(s`), the characterization of Lemma 6 holds for sj390

and r as well, hence, j ∈ MC(r).391

Now assume that j is not maximal with respect to �r, that is, there exists some server
j′ ∈ MC(r) such that j′ �r j. By Definition 10, LCAr(sj′ , sj) 6= sj , and there exists some
server `′ such that

LCAr(sj′ , sj) ∈ P[dc`′ , dc`′(r)] and dc`′ ∈ TLCAr(sj′ ,sj)(sj).

Let x := LCAr(sj′ , sj). Since x 6= sj , and since s` ∈ T sj
(r), it must be the case that392

LCAr(sj′ , s`) = x. Therefore, LCAr(sj′ , s`) ∈ P [dc`′ , dc`′(r)]. Since when splitting the tree at393

x, the subtree containing s` is also the subtree containing sj , we also have that dc`′ ∈ Tx(s`)394

which implies that j′ �r ` as well, in contradiction to `’s maximality. Therefore, it must be395

the case that j is maximal as well. This implies that r is j-colorable by some server j which396

concludes the proof. J397
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A subtree T̃ is fully-colorable if for any point p ∈ T̃ there exists a server ` such that398

p is `-colorable and s` ∈ T̃ . Since Algorithm 1 preserves monotonicity, it follows that a399

server would color points only in the subtree containing this server. Therefore, in order to400

prove that Algorithm 1 is well-defined we need to show that not only the original tree T is401

fully-colorable (Lemma 17), but also that every T̃ ∈ F i−1 is fully-colorable as well.402

For the sake of proving this property (Corollary 23), we characterize properties of the403

min-cost matching MC(p) and the relation �p. First, we now show that for any server ` the404

region in which ` is in the min-cost matching is monotone.405

I Lemma 18 (See Figure 4b). For any server ` and two points r, p in T such that p /∈ Tr(s`),406

the following holds—if ` ∈ MC(p) then ` ∈ MC(r).407

Proof. We will show that for any point x ∈ P[s`, r], if dcj(r) ∈ Tx(s`) then dcj(p) ∈ Tx(s`):408

First, we observe that dcj(r) 6= r (dcj does not serve request at r), since r /∈ Tx(s`) and409

dcj(r) ∈ Tx(s`). Then, we observe that dcj ∈ Tx(s`), since P(dcj(r), x) ⊆ P(dcj , x). By410

Lemma 9, we have P [dcj , dcj(p)] ⊆ P [dcj , dcj(r)], since x /∈ P(dcj , dcj(r)) (dcj(r) ∈ Tx(s`)),411

we have x /∈ P(dcj , dcj(p)) and we have dcj(p) ∈ Tx(si).412

We get that for every x in P[s`, r], if dcj(r) ∈ Tx(s`), then dcj(p) ∈ Tx(s`), which413

implies |Tx(s`) ∩ dc(p)| ≥ |Tx(s`) ∩ dc(r)|. Since ` ∈ MC(p), for any x ∈ P[s`, r] we have414

|Tx(s`) ∩ S| > |Tx(s`) ∩ dc(p)|. Which together yields that the condition of Lemma 6 hold415

also for dc(r), and therefore ` ∈ MC(r). J416

Which yields the following lemma which will be used to prove Lemma 22.417

I Lemma 19 (See Figure 4c). For any two servers b, ` and a points x in T such that418

b ∈ MC(x) and s` /∈ Tx(sb) we have for any p ∈ P(sb, x) that ` /∈ MC(p).419

Proof. Assume towards a contradiction that there exists p ∈ P(sb, x) such that ` ∈ MC(p).420

Consider a point y ∈ P(x, p) which isn’t a tree vertex, and in which at most a single DC421

server will arrive if the request is issued at this point (there exists such a point due to the422

continuity of the metric space). According to Lemma 18, `, b ∈ MC(y).423

Therefore, by Lemma 7 we have:424

|Ty(sb) ∩ DC(y)| < |Ty(sb) ∩ S| , and425

|Ty(s`) ∩ DC(y)| < |Ty(s`) ∩ S| .426

Since y is not a tree node, T = Ty(s`) ∪ Ty(sb) ∪ {y}. Moreover, there is at most one427

DC(y) server at y (by y’s selection), so overall there are more real servers than DC(y) servers,428

a contradiction. J429

The following is an important property of the strict partial order �r we defined over the430

servers.431

432

I Lemma 20 (See Figure 4d). For any two servers `, j, a point r such that sj ∈ Tr(s`), and433

any point p /∈ Tr(s`): If j �p `, then j �r `.434

Proof. First, since sj ∈ Tr(s`) then LCAr(s`, sj) ∈ Tr(s`), therefore we have that LCAr(s`, sj) =435

LCAp(s`, sj). Second, j �p ` therefore there exists dci such that dci ∈ TLCAp(s`,sj)(s`),436

and LCAp(s`, sj) ∈ P[dci, dci(p)]. Clearly, if the request is on r and dci serves point437

r then LCAr(s`, sj) ∈ P[dci, dci(r)]. If dci does not serves point r, by Lemma 9 we438

have P[dci, dci(p)] ⊆ P[dci, dci(r)], and again LCAr(s`, sj) ∈ P[dci, dci(r)]. In either case439

LCAr(s`, sj) ∈ P[dci, dci(r)] and by Definition 10 we have j �r `. J440
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We now prove the main technical lemma used in proving that the algorithm is monotone.441

The lemma roughly shows the following. Let r ∈ T be some point that is ` colorable by some442

server `, and let j be another server on the ‘same side’ of ` with respect to r. Let p be a443

point on the other side of ` and j with respect to r. The lemma states that if p is j-colorable,444

then it is also `-colorable (see Figure 4e for a visual depiction).445

The significance of this lemma is the following—suppose r is a point that the algorithm446

decided should be served by some server ` (which obviously means r is `-colorable). Since447

we want our algorithm to be monotone, this immediately disconnects all the points further448

away from r from the servers that are on the same side as ` with respect to r. This would be449

a problem if there was such a point p that can be served only by servers on the same side as450

`, but not ` itself. The lemma basically shows this situation cannot happen.451

I Lemma 21 (See Figure 4e). For any two servers `, j and two points r, p in T such that452

sj , s` ∈ T r(p): If r is `-colorable and p is j-colorable, then p is `-colorable.453

Proof. Assume for contradiction that p is not `-colorable. We consider the following cases454

455

Case 1. ` ∈ MC(p). By the definition of `-colorable, we have that there is a server i such456

that i ∈ MC(p) and i �p `. If si ∈ T r(p), then by Lemma 18, i ∈ MC(r), and by Lemma 20,457

i �r `, Hence r is not `-colorable, a contradiction. Otherwise, si ∈ Tr(p). Let x = LCAp(s`, si).458

Note that r ∈ P[s`, p], r ∈ P[sj , p] and r /∈ P[si, p] by Observation 15. We get that459

P [si, p]∩P [s`, p] = P [si, p]∩P [r, p] = P [si, p]∩P [sj , p], hence LCAp(sj , si) = LCAp(s`, si) = x.460

In addition, Tx(s`) = Tx(r) = Tx(sj), and since i �p ` we get i �p j by Definition 10. Recall461

that, i ∈ MC(p), therefore p not j-colorable, a contradiction.462

Case 2. ` /∈ MC(p). By Lemma 6, there exists a point x on the path from s` to p such463

that464

|Tx(s`) ∩ S| ≤ |Tx(s`) ∩ DC(p)| . (4)465

Let x be the closest point to r for which (4) holds. Since j ∈ MC(p), by Lemma 6,466

for every point y on the path from sj to p, |Ty(sj) ∩ S| > |Ty(sj) ∩ DC(p)|, and hence,467

x ∈ P[s`, LCA(s`, sj)] ⊆ P[s`, r]. Moreover, since r is `-colorable, ` ∈ MC(r), so Lemma 6468

implies that469

|Tx(s`) ∩ S| > |Tx(s`) ∩ DC(r)| . (5)470

Therefore, combining (4) and (5) yields |Tx(s`) ∩ DC(r)| < |Tx(s`) ∩ DC(p)|, and there must471

be a server dca such that dca ∈ Tx(s`) and dca(r) /∈ Tx(s`)⇒ x ∈ P [dca, dca(r)]. In addition,472

we have473 ∣∣T x(r) ∩ S
∣∣ > ∣∣T x(r) ∩ DC(p)

∣∣ , (6)474

since x is the closest point to p for which (4) holds. Combining (4) and (6) yields that in475

T̂ = T x(r) \ Tx(s`) we have
∣∣∣T̂ ∩ S

∣∣∣ > ∣∣∣T̂ ∩ DC(p)
∣∣∣. Notice that for every b 6= a such that476

dcb ∈ T x(r), we have that dcb(r) ∈ T x(r) since only a single DC server can cross point x.477

Since
∣∣∣T̂ ∩ DC(p)

∣∣∣ =
∣∣∣T̂ ∩ DC

∣∣∣, by Lemma 9, we get
∣∣∣T̂ ∩ DC(p)

∣∣∣ =
∣∣∣T̂ ∩ DC(r)

∣∣∣. Therefore,478 ∣∣∣T̂ ∩ S
∣∣∣ > ∣∣∣T̂ ∩ DC(r)

∣∣∣, and Lemma 7 implies that there exists si ∈ T̂ such that for all479

z ∈ P[si, x], we have480

|Tz(si) ∩ S| > |Tz(s`) ∩ DC(r)| . (7)481
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In addition, (7) holds also for z ∈ (x, r) by (5), hence, i ∈ MC(r). Moreover, since482

x = LCAr(si, s`), x ∈ P[dca, dca(r)] and dca ∈ Tx(s`), we also have i �r `, which combined483

with i ∈ MC(r) is a contradiction to r being `-colorable. J484

The main lemma to show the property fully-colorable is the following:485

I Lemma 22. For a fully-colorable sub-tree T̃ , let r, p ∈ T̃ be two points and ` a server in T̃486

such that p /∈ Tr(s`). If we have that487

r is `-colorable, and488

for all servers a such that sa ∈ T̃ where p is a-colorable, we have sa ∈ Tr(s`),489

then for any x ∈ P(r, p], x is `-colorable.490

Proof. First, by Lemma 21 we have that p is `-colorable as well. Assume for the purpose491

of contradiction that it is not true, let x ∈ P(r, p) be the closet point to p such that x is492

not `-colorable. Since T̃ is fully-colorable, there exists a server b, such that sb ∈ T̃ and x493

is b-colorable. Note that, if sb ∈ Tr(s`), then sb, s` ∈ T r(x), and since r is `-colorable, by494

Lemma 21, x is ` colorable, a contradiction. Let L = LCAr(p, sb)495

Case 1. One of the following two holds: (i) x /∈ P(sb, s`), (ii) x = L. In this case,496

sb, s` ∈ T x(p) and x is b-colorable. Therefore, by Lemma 21, p is b-colorable, a contradiction.497

Case 2. x ∈ P(sb, s`), and x 6= L, which implies s` /∈ Tx(sb), and b ∈ MC(x) (since x498

is b-colorable). Therefore, by Lemma 19, we have ` /∈ MC(y) for any y ∈ P(sb, x), however499

since x 6= L, there exist z ∈ P(x, sb) ∩ P(x, p), on one hand z is `-colorable (by our choice of500

x), on the other hand ` /∈MC(z) (since z ∈ P(sb, x)), a contradiction. J501

The above lemma implies the following corollary which yields that Algorithm 1 is well-502

defined.503

I Corollary 23. For a fully-colorable subtree T̃ , and i a server such that si ∈ T̃ , then for all504

subtrees T̂ ∈ T̃ \Ri we have that T̂ is fully-colorable tree.505

Proof. Let p be the point in T̂ for which this does not hold, since T̃ is fully-colorable, let506

j be the server such that sj ∈ T̃ and p is j-colorable. Let r = argminx{dist(p, x) : x ∈507

P(si, p) ∩ Ri} be the closest point to p in Ri. Observe that r /∈ P(sj , si) since otherwise508

P(sj , p) ⊆ P(sj , r) ∪ P(r, p), where P(sj , r) ∩ Ri = ∅ and P(r, p) ∩ Ri = ∅. Therefore,509

P(sj , p) ∩Ri = ∅, and thus sj ∈ T̂ , a contradiction. Hence, by Observation 151, sj ∈ Tr(si).510

Finally, By Lemma 22, the entire P(r, p) is i-colorable, a contradiction for p /∈ Ri. J511

Using this corollary, we can now prove the Well-Defined Lemma.512

Proof of Well-Defined Lemma [Lemma 14]. In order for Algorithm 1 to be well-defined,513

each point in T should be in the R` region of some server `. We will show that each514

subtree T̃ ∈ F i after iteration i in the run of the algorithm execution is fully-colorable. The515

initial tree, T is fully-colorable by Lemma 17. After each iteration i, every subtree in F i
516

is fully-colorable by Corollary 23 (Note that, Ri is a subregion of a single subtree of F i−1).517

Therefore, eventually a sub-tree would contain a single server and it is fully-colored by this518

server, which yields that F k = ∅ as needed. J519
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5 Figures520

(a) A tree metric. (b) Servers’ locations s≺t.

(c) DC servers’ locations dc≺t with boundary
points B≺t. (d) The critical tree graph T≺t

c .

(e) The coloring of the tree as produced by
ColorRegion. Notice that the tree is colored
irrespective of the next request.

(f) When (next) request σt occurs, it is ser-
viced by the server in whose region it is located.

Figure 3 Key ingredients for Algorithm 1.
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(a) Observation 15.

(b) Lemma 18.

(c) Lemma 19. (d) Lemma 20.

(e) Lemma 21.

Figure 4 A visual depiction of the lemmas used in order to prove the Well-Defined Lemma.
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Figure 5 Issues with the naïve pricing algorithm. In the example on the left, the range served
by the blue server has the blue server on its left end. The open interval up to the blue server is
served by the green server. By setting the surcharges as in the naïve algorithm, a selfish request
(the next request) in the blue zone is indifferent between moving the green and blue servers, so we
have no guarantee that selfish agents emulate the online algorithm. The figure on the right shows a
similar problem where the green and blue regions touch, and, again, by setting the prices naïvely,
selfish agents may choose to move either the green or the blue agent in response to a request. In
both cases, a solution to this problem is to break the tie by “pushing” the boundary between the
green and blue regions slightly “away” from the blue region. See Figure 6 for details.
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A Proof of Lemma 3585

Proof of Lemma 3. Given two sets of points P,Q such that |P | = |Q|, let w(P,Q) be the586

weight of the min-cost matching between P and Q.587

Let costt(LAZY) and costt(ON) be the respective cost of algorithms LAZY and ON when588

serving request σt. We show that for every t,589

costt(LAZY) + ∆Φ ≤ costt(ON), (8)590

for a non-negative potential function Φ = w(S, on), where S and on are the current locations591

of the servers of LAZY and ON respectively. To prove (8), it suffices to consider the moves of592

ON and LAZY independently, in this order.593

Fix some min-cost matching M : S → on. We keep M fixed as ON moves its servers.594

Clearly, when ON moves a server ` by distance d, the cost ofM does not increase by more595

than d. Hence, the same holds for the min-cost matching. Thus Φ increases by at most d,596

and (8) holds.597

Once ON is done with its moves, we analyze the move of LAZY. Note that at this point598

σt ∈ on, i.e., ON has one of its servers at σt. LetM′ be the updated min-cost matching after599

ON moves, and let `′ be some server of LAZY that is matched to σt. Upon the move of `′ to600

σt, the cost ofM′ is decreased by dist(s`′ , σt). Since the cost of the min-cost matching after601

`′ moves is no bigger than that ofM′, Φ decreases by at least dist(s`′ , σt) as well, which is602

exactly costt(LAZY). Therefore, costt(LAZY) + ∆Φ ≤ 0, and (8) holds. J603

B Full Argument for Lemma 2604

The proof sketch of Lemma 2 shows that one can set surcharges where for the incoming agent605

there exists a server that minimizes the distance + surcharge and this is the same server that606

the algorithm would choose. Whenever this server can be matched (in a min cost matching)607

to the DC server that served the request, Lemma 3 implies that the competitive ratio achieved608

is optimal. This is enough for a truthful online algorithm with optimal competitive ratio if we609

can break ties for the agent. However, our goal is to let the agents break ties for themselves.610

We first notice the are two scenarios where an agent can have more than one disutility611

minimizing server — (i) either the transition between the responsibility area of server j and612

adjacent server i is the location of server i (left side of Figure 5). In this case, setting prices613

using Equation (1) will result in both server i and server j being the disutility minimizing614

servers for the responsibility area of agent i. (ii) the responsibility area of agent i contains a615

tree vertex x from which starts the responsibility area of agent j (right side of Figure 5, i is616

blue and j is green). In this case, if a request is made in the responsibility area of agent i617

but on the other side of x than server i itself (i.e., in T x(si)), then both server i and server j618

are the disutility minimizing servers for this request.619
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Figure 6 Modifying the regions for which the DC servers are responsible by pushing their
boundaries away from real servers and tree vertices. This prevents indifference between different
real servers except for isolated points. The boundaries are pushed by small amounts such that even
their sum over all regions and all steps is arbitrarily small, thus having no effect on the competitive
ratio. See Appendices A and B for the full argument, which uses a potential function.

To resolve this issue, we “nudge” the responsibility area of agent i slightly to the direction620

of the responsibility area of agent j by an exponentially decreasing tiny ε (see Figure 6). We621

inspect the proof of Lemma 3 to see why this does not change the competitive ratio. Since622

we do not necessarily use the server that minimizes the min cost matching at the nudged623

areas, Equation (8) does not hold if the request is in the nudged area. We notice though that624

this equation is violated by at most kε. To see this, we first move ON to the request. Using625

the same argument as in Lemma 3, we see that Equation (8) still holds after doing this.626

We now move LAZY. Assume LAZY moves some server `′. If the request would have been627

in the border between two responsibility areas before the nudge, then the cost of the min628

cost matching would have decreased by at least dist(s`′ , σt) and this would have paid for the629

cost of moving `′. We notice that if the location of a request in DC moves by ε, the locations630

of all servers change by at most ε. Therefore, using the same matching in the nudged area631

as we would have used in the border before the nudge increases the cost of the min cost632

matching by at most kε. Hence, moving `′ decreases the cost of the min cost matching by at633

least dist(s`′ , σt)− kε, violating Equation (8) by at most kε.634

As we can let ε exponentially decay (say by a factor of two at each step t), summing635

Equation (8) for all t’s yields that the cost of LAZY is at most 2kε larger than the cost of636

ON. As ε is arbitrarily small, so is the difference between LAZY and ON, which thus have637

the same competitive ratio.638

C Implementation in Polynomial Time639

Algorithm 1 as defined in Section 3 is continuous in the sense that every point is considered640

when deciding which set of points should be in the region Ri of some server i. In this secion,641

we show that one can discretize the metric space in a way that only polynomially many642

points (in the number of servers and vertices of the tree) are considered when determining643

the regions of each server.644

Consider a point p ∈ T , such that there exist 1 ≤ i < j ≤ k such that

dci(σ≺t ‖ p) = dcj(σ≺t ‖ p)
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(where ‖ denotes concatenation), then p is called a boundary point. That is, a boundary
point is a point for which, if a request occurs in p, two DC servers will serve the request.
Define the set of all boundary points for Double Cover just before event t arrives (see Fig.
3c in Appendix 5):

B≺t =
{
p | ∃1 ≤ i < j ≤ k such that dci(σ≺t ‖ p) = dcj(σ≺t ‖ p)

}
.

I Definition 24. Given a tree metric T = (V,E, dist), a set of requests σ≺t, and the current645

locations of the servers S≺t, we define the critical tree graph T≺t
c by subdividing the edges646

of the tree (V,E) at all the server locations and boundary points, and retaining the distance647

function dist, see Fig. 3 in Appendix 5. Formally:648

Define the vertex set of the critical tree graph T≺t
c to be the set V ≺t

c , the union of the649

following point sets on the tree metric650

Vertices of the tree T .651

Server locations
{

S≺t
`

}
`=1,...,k

.652

The set of boundary points B≺t.653

The edge set of T≺t
c is denoted by E≺t

c . There is an edge (p, q) ∈ E≺t
c (where p ∈ V ≺t

c654

and q ∈ V ≺t
c ) if p and q lie along the same edge of T , and there is no intermediate point655

r ∈ V ≺t
c between them. The weight of the edge (p, q) ∈ E≺t

c is the distance between p and656

q in the tree metric T .657

The intuition behind the critical graph is that the vertices of the graph are exactly the658

points in the metric space where the sets of valid colors ({` : p is `-colorable}) change.659

I Lemma 25. Let e = {v1, v2} be some edge of T≺t
c , and let ` be some server such that660

v1 ∈ P[s`, v2] and v1 is `-colorable. The edge e is `-colorable iff there exists some point p661

along the edge, excluding the endpoints, such that ` ∈ MC(p).662

Proof. By definition, if e is `-colorable, then for every p along the edge, p is `-colorable, and663

therefore, ` ∈ MC(p).664

Now assume that there exists some p along the edge e such that ` ∈ MC(p). Since there665

exists some min-cost matching such that s` is matched to the DC server that serves p, and666

since p cannot be a vertex of T , by Lemma 6,667

|Tp(s`) ∩ S| > |Tp(s`) ∩ DC(p)| . (9)668

Since there are no servers and no tree vertices along edge e, for every point q ∈ P [v1, v2] \669

{v1, v2},670

|Tq(s`)| = |Tp(s`)| . (10)671

For a given q ∈ P[v1, v2] \ {v1, v2} let

d1(q) = |Tq(v1) ∩ DC(q)| (= |Tq(s`) ∩ DC(q)|)

be the set of DC servers in the subtree containing v1 when splitting T at point q after serving672

a request at q. Let i be the index of the DC server that serves all the requests along the673

edge e, excluding its endpoints (there must be a unique such DC server since there are no674

boundary points along e). Notice that for every j 6= i, P [dcj , dcj(q)]∩P [v1, v2] \ {v1, v2} = ∅.675

Otherwise, there would have been a point q along e which is closer to server j than server i,676

which implies the existence of a boundary point along e.677
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Since there are no tree vertices along e, we get that for every q, q′ ∈ P[v1, v2] \ {v1, v2},678

d1(q) = d1(q′). Therefore, for every such point q,679

|Tq(s`) ∩ DC(q)| = d1(q) = d1(p) = |Tp(s`) ∩ DC(p)| . (11)680

Combining (9), (10) and (11) yields that for every q ∈ P[v1, v2] \ {v1, v2}, |Tq(s`) ∩ S| >
|Tq(s`) ∩ DC(q)| . Therefore,

∣∣T q(s`) ∩ S
∣∣ < ∣∣T q(s`) ∩ DC(q)

∣∣, and there exists some point
q′ ∈ P[q, v2] such that∣∣T q′(s`) ∩ S

∣∣ ≤ ∣∣T q′(s`) ∩ DC(q)
∣∣⇒ ∣∣T q′(q) ∩ S

∣∣ ≤ ∣∣T q′(q) ∩ DC(q)
∣∣ .

Since there are no servers in P[p, v2] (there are no servers along every edge e of T≺t
c ),681

for every server j such that sj ∈ Tq(v2), q′ is on the path from sj to q, and by Lemma682

6, j /∈ MC(q). By definition, this implies that for every point q along edge e, and every j683

such that sj ∈ T v2(q), q is not j-colorable. Since by Lemma 17 every point is colorable by684

some server, we get that for every q along e, q is `′-colorable by some server `′ such that685

s`′ ∈ T q(v2) ⇒ s`′ ∈ T v1(v2). By Lemma 21, since v1 is `-colorable, we get that every q686

along the edge e is `-colorable, which implies that e is `-colorable, as desired. J687

I Lemma 26. Let e be some edge {v, v′} ∈ E≺t
c such that color(v) = j and color(v′) = j′.688

There exists i ∈ {j, j′} such that all points in P[v, v′] \ {v, v′} are i-colorable which can be689

determined by inspecting a single point in P[v, v′] \ {v, v′}.690

Proof. consider some edge e = {v, v′} ∈ E≺t
c such that color(v) = j and color(v′) = j′. Let691

p be a point between v and v′. By Lemma 17, it is colorable by some server `. Since there692

are no servers along x, ` must be located either in T v(p) or in T v′(p). Assume without loss693

of generality that ` ∈ T v(p). By Lemma 21, p is j-colorable, which implies that j ∈ MC(p).694

By Lemma 25, x is j-colorable. J695

I Lemma 27. Determining Ri at every iteration i in Step 1b of Algorithm 1 can be done in696

polynomial time.697

Proof. Consider the graph T≺t
c . This graph has at most 2k− 1 + |V | vertices — k servers, at698

most k− 1 boundary points, and |V | original vertices. The boundary points can of course be699

computed in polynomial time. Consider iteration i of Step 1b of Algorithm 1. To determine700

Ri, one can start at si, which is obviously in Ri, and then expend Ri using any tree traversal701

algorithm (that runs in linear time) on T≺t
c . The traversal does not go further down the tree702

if the vertex/edge currently considered is not i-colorable.703

To check if a point r ∈ T is i-colorable can be done in poly-time: Property 1 of Definition 12704

can easily be checked. As for properties 2 and 3, Computing MC(r) can be done in poly-time705

using the characterization in Lemma 6. Therefore, property 2 can immediately be checked.706

For Property 3, one should consider each server j ∈ MC(r), and check that j ⊀r i, which707

again can be done in poly-time.708

From the above, it is clear that determining whether a vertex in T≺t
c is i-colorable can be709

done in poly-time. As for an edge, by Lemma 26, checking whether the edge is i-colorable710

can be done by inspecting an arbitrary point in the edge, and checking whether this point711

is i-colorable, which again, can be done in poly-time. Therefore, the tree-traversal can be712

made in poly-time, and so does determining Ri. J713
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D Missing Proofs of Section 4714

Proof of Lemma 6. ⇐: Let p ∈ P and q ∈ Q be two points such that there exists a point715

x ∈ P(p, q) such that
∣∣T x(q) ∩ P

∣∣ ≤ ∣∣T x(q) ∩Q
∣∣ and let M : P → Q be a matching such716

thatM(p) = q. Since p is matched to a server in Tx(q),
∣∣T x(q) ∩ P − {p}

∣∣ < ∣∣T x(q) ∩Q
∣∣,717

and there must be a server p̂ ∈ Tx(q) ∩ P that is matched to a server q̂ ∈ T x(q) ∩ Q. Let718

y = LCAx(p̂, q). Since p̂ and q are both in Tx(q), y 6= x. Consider the matchingM′ in which719

p is matched to q̂, p̂ is matched to q, and for every p̃ ∈ P \ {p, p̂},M′(p̃) =M(p̃). We have720

dist(p, q) + dist(p̂, q̂) = dist(p, x) + dist(x, y) + dist(y, q) +721

dist(p̂, y) + dist(y, x) + dist(x, q̂)722

> dist(p, x) + dist(x, q̂) + dist(p̂, y) + dist(y, q)723

≥ dist(p, q̂) + dist(p̂, q),724

where that first equality is due to the fact that the path from x to y is contained in both725

the path from p to q and the path from q̂ to p̂, the first strict inequality is due to dropping726

non-zero terms, and the last inequality follows from the triangle inequality. Therefore,M′ is727

a matching of a strictly smaller cost than that ofM, andM cannot be a min-cost matching.728

⇒: Assume that the condition holds for p, q, letM be a matching. Let x = LCAq(p,M(p)).729

Case 1. x 6= q, therefore
∣∣T x(q) ∩ P

∣∣ > ∣∣T x(q) ∩Q
∣∣. Hence, there exists p̂ ∈ T x(q) s.t.730

M(p̂) /∈ T x(q). Let q̂ =M(p̂), and q′ =M(p). Note that dist(p, q′) = dist(p, x) + dist(x, q′)731

and dist(p̂, q̂) = dist(p̂, x) + dist(x, q̂). Consider the matchingM′ in which p is matched to q̂,732

p̂ is matched to q′, and for every p̃ ∈ P \ {p, p̂},M′(p̃) =M(p̃).733

dist(p, q̂) + dist(p̂, q′) ≤ dist(p, x) + dist(x, q̂) + dist(p̂, x) + dist(x, q′)734

= dist(p, q′) + dist(p̂, q̂),735

where the inequality is by the triangle inequality. Therefore,M′ is also a min-cost matching.736

Let x′ = LCAq(p,M′(p)) then dist(p, x′) > dist(p, x) since x′ /∈ T x(q), therefore we can repeat737

this process until x = q (Case 2).738

Case 2. x = q, hence P(p, q) ⊆ P(p,M(p)). Let q̂ = M(p) and let p̂ be such that739

q =M(p̂). Consider the matchingM′ in which p is matched to q, p̂ is matched to q̂, and for740

every p̃ ∈ P \ {p, p̂},M′(p̃) =M(p̃).741

dist(p, q) + dist(p̂, q̂) = dist(p, q̂)− dist(q, q̂) + dist(p̂, q̂)742

≤ dist(p, q̂) + dist(p̂, q)743

where the last inequality is by the triangle inequality. Therefore,M′ is also min cost matching744

andM′(p) = q as needed. J745

Proof of Lemma 7. Let v be the closest vertex to r in Tr(q) (recall that r 6∈ Tr(q), so v 6= r).746

If there exists p ∈ P [v, r) ∩ P , let p ∈ P [v, r) ∩ P be the closest such point to r. In this case,747

the condition holds for p since for all x ∈ P(p, r), T x(r) ∩ P = Tr(q) ∩ P .748

If there is no such p, then∣∣(T v(r)− {v}) ∩ P
∣∣ = |Tr(q) ∩ P | > |Tr(q) ∩Q| ≥

∣∣(T v(r)− {v}) ∩Q
∣∣ .

By the pigeonhole principle, there exists v′ ∈ T v(r) such that |Tv(v′) ∩ P | > |Tv(v′) ∩Q|.749

Therefore, by repeating above process, we find p̂ ∈ P ∩ Tv(v′) for which the condition holds750

for all x ∈ P(p̂, v). Since the condition holds for every x ∈ P(v, r) (as T x(r)∩P = Tr(q)∩P ),751

the lemma follows. J752
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Figure 2 Servers and DC servers are denoted by numbers and letters respectively. Points on
the tree are said to be colorable by some set of servers. Colorability of a point r is determined
by simulating the double cover (DC) algorithm for a request at r. When DC processes a request,
multiple DC servers move towards the request, and one or more arrive to serve it. Imagine a server
were to look along the tree towards r when the DC servers were in motion in response to a request
at r. Such a server may see a trail left by (at most one) DC server in motion towards r. Different
servers may see trails of different DC servers. Two servers see the same trails beyond (above) their
lowest common ancestor (when the tree is rooted at r) but for a DC server that traverses their lowest
common ancestor, they may observe different trails. We say that server i has higher priority than
server j with respect to r, if the trail of the DC server that traverses the lowest common ancestor of
i and j is contained in the trail seen by server j (of the same DC server). On the left the movement
of the DC servers relative to the real server positions is depicted. On the right, all paths from real
servers to r are depicted, with dashed lines indicating vertices seen by more than one real server.
In this example, 1 �r 3 since that trail that server 1 sees of DC server a is contained in the trail
that server 3 sees of DC server a. Similarly, 2 �r 3 (because of a), 5 �r 4 (because of c), and
4, 5 �r 1, 2, 3 (because of b). Notice that �r is not defined for all pairs of servers; For example,
both 1 �r 2 and 2 �r 1. Subsequent to the motion of the DC servers, there are several min cost
matching between real servers and DC servers. In one such matching server 1 is matched to server b,
in another such min matching server 2 is matched to server b, in a third such min matching server 3
is matched to server b. Therefore, MC(r) = {1, 2, 3}. Since 1 �r 2, 3 �r 2, 2 �r 1 and 3 �r 1. We
get that r is 1, 2-colorable. r is not 3-colorable since 1 �r 3.
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