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Abstract

We study truthful mechanisms for approximating the Maximin-Share (MMS) value
of agents with additive valuations for indivisible goods. Algorithmically, constant
factor approximations exist for the problem for any number of agents. When adding
incentives to the mix, a jarring result by Amanatidis, Birmpas, Christodoulou, and
Markakis [EC 2017] shows that the best possible approximation for two agents
and m items is ⌊m2 ⌋. We adopt a learning-augmented framework to investigate
what is possible when a prediction on the input is given. For two agents, we give
a truthful mechanism that takes agents’ ordering over items as prediction. When
the prediction is accurate, our mechanism gives a 2-approximation to the MMS
(consistency), and when the prediction is off, our mechanism still obtains an ⌈m2 ⌉-
approximation to the MMS (robustness). We further show that the mechanism’s
performance degrades gracefully in the number of “mistakes” in the prediction;
i.e., we interpolate between the two extremes: when there are no mistakes, and
when there is a maximum number of mistakes. We also show an impossibility
result on the obtainable consistency for mechanisms with finite robustness. For the
general case of n ≥ 2 agents, we give a 2-approximation mechanism for accurate
predictions, with relaxed fallback guarantees. Finally, we give experimental results
which illustrate when different components of our framework, made to ensure
consistency and robustness, come into play.

1 Introduction

Allocating items among self interested agents in a “fair" way is an age-old problem, with many
applications such as splitting inheritance and allocating courses to students. As a starting point,
consider the case of two agents. When the items are divisible, the famous cut-and-choose procedure
achieves fairness in two senses. Firstly, no agent wants to switch their allocation with the other;
i.e., there is no envy among the agents. Secondly, each agent gets a bundle of items which they
value at least as much as their value for all the items divided by 2; that is, each one gets their “fair
share". When moving to the case of indivisible goods, which is relevant to scenarios such as splitting
inheritance and allocating courses, things get trickier. For instance, if there’s a single item, the agent
that does not receive that item does not get an envy-free allocation, nor do they get their “fair share"
according to the previous definitions. Therefore, it is clear that some fairness needs to be sacrificed in
this case.

The study of fair allocations with indivisible goods has been a fruitful research direction, with many
meaningful notions of fairness studied (see survey by Amanatidis et al. [10]). In this paper, we
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focus on the notion of the Maximin Share, or MMS, introduced by Budish [18]. For two agents, this
notion captures the value an agent will ensure if we implement the cut-and-choose procedure. That
is, assume Alice splits the items into two bundles, and then Bob takes one of them (adversarially),
and Alice gets the second one. The MMS captures exactly how much value Alice can guarantee for
herself. Generalizing the notion for n agents is pretty straightforward — the MMS is the minimum
value Alice can guarantee for herself when she partitions the items into n bundles, assuming n− 1
bundles are taken adversarially.

We study the case where agents have additive valuations over goods.1 For the case of two agents, the
allocation produced by the cut-and-choose procedure guarantees each of the agents their MMS value.
For more than two agents, the existence of such an allocation is not longer guaranteed. Kurokawa et al.
[30] show an instance of three agents, where in every allocation, at least one of the agents does not
get their MMS value. Since allocating all the agents their MMS value is not always feasible, various
papers studied the existence of approximately optimal allocation. An allocation is an α-approximate
MMS allocation for α > 1 if every agents gets at least an 1/α fraction of their MMS value. Feige
et al. [22] introduce an instance where one cannot find an α-approximate allocation for α < 40

39 .
On the other hand, [30] show there always exists 3

2 -approximation. The 3
2 factor was gradually

improved [16, 24, 23, 8, 4, 3, 5], where the state-of-the-art algorithm achieves an approximation of
959/720 < 4/3 [3]. Adding incentives to the mix further complicates matters.

Amanatidis et al. [7] study the case of two additive agents, and m items, where the algorithm (or
mechanism) does not know the values of the agents. Thus, the algorithm’s designer is faced with the
task of devising an allocation rule such that (i) agents will maximize their allocated value by bidding
truthfully, and (ii) the resulting allocation is an α-approximate MMS allocation for an α close to 1
as possible. [7] show that no incentive-compatible algorithm can approximate the MMS to a factor
better than ⌊m2 ⌋, and this is matched by the following trivial mechanism — the first agent picks their
favorite item, and the second agent gets the rest.

For 2 < n < m,2 a trivial truthful algorithm that lets the first n− 1 agents pick a single item in some
order and gives the last agent the rest achieves an ⌊m−n+2

2 ⌋-approximation, and no better mechanism
is known. It is conjectured that one cannot drop the dependence in m for n > 2. We are left with
a stark disparity. On the one hand, assuming agents’ values are public information, approximate
solutions are known to exist. On the other hand, when considering private values, it seems that
only trivial approximations are possible. The goal of this paper is to bridge these two regimes using
predictions.

We study the problem of truthful allocations that approximate the MMS, taking a learning-augmented
point of view. In the learning-augmented framework, the algorithm designer aims to tackle some
intrinsic hardness of the problem at hand, which might arise due to computational constraints, space
constraints, input arriving piecemeal online, or incentive constraints, among others. To help the
designer overcome these constraints, the algorithm is given some side information which is a function
of the input, or a prediction, in order to improve the algorithm’s performance. The hope is that if the
prediction is accurate, then the performance is greatly improved over the performance without the
prediction (termed consistency). On the other end, if the prediction is inaccurate then the performance
of the algorithm is comparable to the performance of the best algorithm that is not given access to
predictions (termed robustness). The learning-augmented framework has proven useful in bypassing
impossibilities that arise due to incentive issues [14, 1, 25, 15, 40, 33, 13].

When designing a learning-augmented mechanism, one should think of realistic predictions. For
instance, predicting the entire valuation profile of all agents seems to be a strong assumption. A
more plausible assumption is to have some ordinal ranking over the items of the agents. Indeed, it
seems unlikely that the algorithm can accurately predict Alice’s value for a car, but it is plausible
that the algorithm can guess that Alice values the car more than she values the table. Ideally, the
algorithm’s performance should remain robust if the predicted ordering is almost perfect, with only
a few pairs of items whose real ordering is swapped in the prediction. Another desired property
is to make the prediction as space-efficient as possible, as previous results [20, 31, 32] show that
succinct predictions are crucial for learning parameters from few samples and for incorporating a
PAC-learnable component in the learning-augmented framework.

1Agent i with an additive valuation has a value vij = vi(j) for every item, and their value for bundle S is
vi(S) =

∑
j∈S vij .

2For n > m, the MMS of each agent is trivially 0. The problem becomes more interesting for m≫ n.
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In this paper we devise learning-augmented truthful mechanisms for the problem of approximate-
MMS allocations, while taking into considerations the concerns mentioned above.

Our Results. We start by studying the two agent case. We aim at getting: (a) Constant consistency:
when the predictions are accurate, we want to get a constant approximation to the MMS. (b) Near-
optimal robustness: when the predictions are off, we want to get as close as possible to the optimal
⌊m2 ⌋-approximation we can obtain by truthful mechanisms [7].

Plant-and-Steal Framework. In Section 3 we present a framework for devising learning-
augmented mechanisms for approximating the MMS with two agents. As using only predictions does
not guarantee any robustness, we use reports to ensure each agent gets at least one valuable item.
This is done while maintaining a near-optimal allocation according to predictions. Our framework,
which we term Plant-and-Steal, is modular. Along with the set of goods and the agents’ reports,
it also receives a prediction and an allocation procedure. Different combinations of predictions
and allocation procedures yields different consistency-robustness tradeoffs. It is worth noting that,
although privacy is not the primary focus of this paper, the Plant-and-Steal framework uses
agents’ reports in a minimal way, as they are only required to select (i.e. “steal back”) a single item
from a predefined set of options, where this set is determined by the predictions, and not the actual
reports.

Ordering Predictions. In Section 4, we study learning-augmented mechanisms when the predic-
tions given are preference orders over items of the agents, rather than the values. We instantiate the
Plant-and-Steal framework with a Round-Robin-based allocation procedure. We observe that in
the case of two agents, Round-Robin obtains 2-approximation to the MMS. The 2-consistency of
using Plant-and-Steal with Round-Robin as the allocation procedure almost immediately follows.
The ⌈m2 ⌉ robustness follows two facts: (a) Round-Robin produces allocations that are balanced in the
number of items allocated to each agent; and (b) The Plant-and-Steal framework ensures each
agent gets one of their 2 favorite items according to reports. In Appendix E, we show how to get an
improved 3

2 consistency, while maintaining O(m) robustness when using a modified Round-Robin
allocation procedure.

In Sec 5, we then study the performance of the Plant-and-Steal framework when using the
Round-Robin procedure, when the prediction given is not fully accurate, but accurate to some degree.
To quantify the prediction’s accuracy, we adopt the Kendall tau distance measure. The Kendall tau
distance counts the number of pairs of elements swapped in the predicted preference order and the
order induced by the true valuations. We show that combining the Plant-and-Steal framework
with a Round-Robin allocation procedure obtains O(

√
d)-approximation to the MMS when the

Kendall tau distance is d. Since d goes from 0 to
(
m
2

)
= Θ(m2), we recover the constant consistency

when there are no errors, and the O(m) robustness when the number of errors is maximal.

General Predictions. In Appendix G, we study the two-agent case where the mechanism is given
access to predictions which are not necessarily the preference order of the agents. We first show that
for any prediction given to the learning-augmented mechanism, no mechanism can simultaneously
be α-consistent while maintaining finite robustness for α < 6/5. For the proof, we leverage the
characterization of two-agent truthful mechanisms by [7].

We then study small-space predictions. The Round-Robin-based mechanisms described above
require an Ω(m)-bit prediction (to describe an arbitrary allocation of items). We first notice that
we can implement a bag-filling type allocation procedure using O(logm)-bit predictions. This
already achieves a constant consistency along with O(m) robustness. We then devise a more refined
allocation procedure, which requires O(logm/ϵ)-bit predictions, and achieves 2 + ϵ consistency
along with ⌈m2 ⌉ robustness.

General number of agents n. In Appendix H, we devise a learning-augmented truthful mechanism
for n ≥ 2 additive agents. We obtain a 2-consistent mechanism, while relaxing the robustness
guarantees of the mechanism. We take a similar approach to the work of [18, 27, 28, 2, 5], who
compete against a relaxed benchmark of the MMS value for n̂ > n agents, and try to minimize n̂. We
obtain an max{m− n̂− 1, 1}-approximation to the MMS for n̂ = ⌈ 3n2 ⌉ agents when the predictions
are off. Our mechanism uses the modified Round-Robin procedure from [8] to determine the initial
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allocation using the predictions. It then applies a recursive plant-and-steal procedure to determine the
final allocation.

Experiments. Finally, In Section 6, we demonstrate how several components in our design come
into play when experimenting with synthetic data. We run different variants of mechanism on
two player instances, and show that when predictions are accurate, then only using predictions is
nearly optimal, if predictions are noisy, then the stealing component ensures robustness, and our
Plant-and-Steal framework achieves best-of-both-worlds guarantees.

We summarize the bounds we obtain in Table 1.

Setting Consistency Robustness Reference

Ordering predictions,
n = 2

2 ⌈m/2⌉ Section 4
3/2 ⌊2m/3⌋ Section 4
≥ 5/4 Any [6]

Arbitrary predictions,
n = 2

Any ≥ ⌊m/2⌋ [7]

≥ 6/5 Bounded Section G.1

3 logm+ 1 space 4 m− 1 Section G.2
O(log(m)/ϵ) space 2 + ϵ ⌈m/2⌉ Section G.3
n > 2 2 m − ⌈3n/2⌉ − 1 for

n̂ = ⌈3n/2⌉
Section H

Table 1: Known bounds for truthful learning-augmented MMS mechanisms.

Further Related Work. In addition to the the studies mentioned above, we give a comprehensive
review of further related work in Appendix B.

2 Preliminaries

In the setting we study, there is a set N of n agents and a set M of m indivisible items. Each agent
has a private additive valuation over the items, unknown to the mechanism designer, where the value
of agent i for item j is vij (also denoted as vi(j)). For a bundle S ⊆M of items, vi(S) =

∑
j∈S vij .

The fairness notion we focus on is the following.
Definition 2.1 (Maximin Share). The Maximin Share (MMS) of agent i with valuation vi and n
agents is

µn
i = max

S1
⋃
· ...

⋃
· Sn=M

min
j∈[n]

vi(Sj);

that is, if i were to partition the items into n bundles, and then n − 1 of those bundles are taken
adversarially, what is the value i can guarantee for themselves. When clear from the context, we omit
n and use µi to denote the MMS of i with n agents.

We are interested in mechanisms that produce approximately optimal allocations, as defined next.
Definition 2.2 ((γ, k)-approximate MMS Allocation). An allocation X = (X1, . . . , Xn) is (γ, k)-
approximate MMS allocation for γ > 1 and a natural number k if for every agent i,

vi(Xi) ≥ µk
i /γ.

When k = n, we say the allocation is a γ-approximate MMS allocation.

We study mechanism that get some prediction on the input.
Definition 2.3 (Learning-Augmented Mechanism). A learning-augmented mechanism takes agents’
reports r = (r1, . . . , rn) and predictions p in some prediction space P , and outputs a partition of
the items

X(r,p) = (X1(r,p), X2(r,p), . . . , Xn(r,p)), X1(r,p)
⋃
· X2(r,p)

⋃
· . . .

⋃
· Xn(r,p) = M,

where agent i gets Xi(r,p).
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For learning-augmented mechanisms, truthfulness should hold for any possible prediction p.

Definition 2.4. A learning-augmented mechanism is truthful if for every agent i and every possible
report of other agents r−i and every possible prediction p,

vi(Xi(vi, r−i,p)) ≥ vi(Xi(ri, r−i,p))

for every ri.

We next define the consistency and robustness measures according to which we measure the perfor-
mance of our mechanisms.

Definition 2.5 (α-consistency). Consider a prediction function fP which takes a valuation profile
and outputs a prediction in prediction space P . A learning-augmented mechanism is α-consistent for
α > 1 and prediction function fP if for every valuation profile v and every prediction p = fP(v),
X(v,p) is an α-approximate MMS allocation.

Definition 2.6 ((β, k)-robust). A learning-augmented mechanism is (β, k)-robust for β > 1 and
natural number k if for every valuation profile v and every prediction p, X(v,p) is an (β, k)-
approximate MMS allocation. If k = n, we say the mechanism is β-robust.

For ease of presentation, for valuation vi, report ri and prediction pi, we use vℓi , r
ℓ
i , p

ℓ
i to denote both

the ℓth highest good according to the valuation/report/prediction and its value. Note that, we may use
vℓi for ℓ > m, in this case, vℓi = 0. For ℓ = 1, i.e., the highest good we use v∗i , r

∗
i , p

∗
i .

Ordering Predictions and Kendall tau Distance. Most of our mechanisms use predictions which
take the form of an ordering over agents’ items. That is, fP(v) outputs a vector of orderings
p = (p1, . . . , pn), where pℓi is the ℓth highest valued item of i in M according to p. Accordingly, for
agent i, let vℓi be the ℓth highest valued item according to v. For two items j ̸= j′, We use j ≻pi j

′ to
denote that j is higher ranked than j′ according to p.

When studying imprecise predictions, we want to quantify the degree to which the prediction is
inaccurate. For this, we use the following measure. For an agent i, we define our noise level with
respect to the Kendall tau distance (also known as bubble-sort distance) between v and p.

Definition 2.7 (Kendall tau distance). The Kendall tau distance counts the number of pairwise
disagreements between two orders. For i’s valuation vi and predicted preference order pi, we define

Kd(vi, pi) = |{j ≻pi j
′ : vi(j) < vi(j

′)}.

That is, the number of pairs of items where the prediction got their relative ordering wrong. We also
denote Kd(v,p) = max{Kd(v1, p1),Kd(v2, p2)}.

We note that the Kendall tau distance between vi and pi, Kd(vi, pi), can go from 0 to
(
m
2

)
.

3 Plant-and-Steal Framework

In this section, we present the framework which is used to devise learning-augmented mechanisms for
two agents. The ideas presented here also inspire the more complex learning-augmented mechanism
for n > 2 agents. Missing proofs of this section appear in Appendix C. Our framework, which we
term Plant-and-Steal is given the set of goods, an allocation procedure A, the prediction p and
reports v. The framework operates as follows:

1. It first applies A on the predictions p to divide the set of goods into two bundles A1, A2.
The procedure A should be an allocation procedure with good MMS guarantees. We
use different allocation procedures depending on the type of prediction given and on the
consistency-robustness tradeoffs we are aiming for.

2. Planting phase: For each agent i, it picks i’s favorite item in set Ai according to prediction,
and “plants” this item in the bundle Aj of the other agent j ̸= i. Let T1, T2 denote the sets
that result in this planting phase.

3. Stealing phase: To obtain the final allocation, each agent i now “steals” back their favorite
item from set Tj of agent j ̸= i according to reports. Notice this is the first and only place
where we use agents’ reports.
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This procedure is trivially truthful because the only step where we use agents’ reports is the one
where they pick exactly one item to steal back from Tj , and this Tj only depends on predictions,
and not reports (Lemma 3.1). To obtain robustness, we notice that each agent gets one of their two
favorite items according to their true valuations (Lemma 3.2). This implies a robustness of m− 1.
We show that for balanced allocations, we get improved robustness guarantees (Lemma 3.4).

For S ⊆M , and agent i, let v∗i (S) (p∗i (S),r
∗
i (S)) be the max valued item in S according to vi (pi, ri).

for g ∈ M and S ⊆ M , denote S + g := S ∪ {g} and S − g = S \ {g}. The Plant-and-Steal
framework is presented in Mechanism 1.

MECHANISM 1: Two agent Plant-and-Steal Framework
Input :Allocation Procedure A, set of items M , predictions p and reports r
Output :Allocations X1

⋃
· X2 = M

/* Find an initial allocation by applying A on the predictions */
(A1, A2) := A(M,N,p)

/* Plant favorite items according to predictions */
ĵ1 ← p∗1(A1)

ĵ2 ← p∗2(A2)

T1 ← A1 + ĵ2 − ĵ1

T2 ← A2 + ĵ1 − ĵ2

/* Steal according to report */
j̃1 ← r∗1(T2)

j̃2 ← r∗2(T1)

X1 ← T1 + j̃1 − j̃2
X2 ← T2 + j̃2 − j̃1

We show that for any allocation function A and predictions p given to the framework, the resulting
mechanism is truthful.
Lemma 3.1 (Truthfulness Lemma). For any allocation procedureA, Plant-and-Steal mechanism
using A is truthful.

Since the framework is truthful, from now on, we assume that r = v. Next, we show that the
Plant-and-Steal mechanism ensures that for each agent, an item is allocated with a value that is
at least as good as their second-best option according to their value.
Lemma 3.2. Consider the allocation (X1, X2) returned by Plant-and-Steal with some allocation
procedure A. For any agent i, then v1i ∈ Xi or v2i ∈ Xi.

We next claim that if i gets one of their two favorite items and any k − 1 additional items, i’s value is
an m− k-approximation to µi.
Lemma 3.3. For any agent i, let S ⊆ M be a subset of the items of size |S| = k and v1i ∈ S or
v2i ∈ S then

vi(S) ≥ µi/(m− k).

We immediately get the following.
Lemma 3.4 (Robustness Lemma). Let A be an allocation rule guaranteeing min{|A1|, |A2|} ≥ k,
then when Plant-and-Steal uses A, the resulting mechanism is (m− k)-robust.

Proof. By Lemma 3.2, we are guaranteed that each agent gets one of their two favorite items according
to their report. Combining with the condition on A and Lemma 3.3, the proof is finished.

4 Ordering Predictions

In this section, we consider the case of two agents, where the predictions (and in fact, also the reports)
given to the mechanism are preference orders of agents over items. Our mechanisms makes use of
the Plant-and-Steal framework instantiated by Round-Robin based allocation procedures. We
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first present the round-robin allocation procedures we’ll use, and give their approximation guarantees
when the input is accurate. Next, we prove the robustness and consistency guarantees. Finally,
we quantify the accuracy of the predictions using the Kendall tau distance, and obtain fine-grained
approximation results, where the approximation smoothly degrades in the accuracy.

Amanatidis et al. [6] studied mechanisms where the preference orders of the agents over items are
public (while valuations are private). They showed that no truthful mechanism can achieve a better
approximation than 5/4 in this setting. This implies that when the predictions are preference orders,
no learning-augmented mechanism can obtain consistency better than 5/4, no matter if the robustness
is bounded or not.
Proposition 4.1 (Corollary of Amanatidis et al. [6]). For any ϵ > 0, no mechanism that is given
preference orders as predictions can obtain consistency 5/4− ϵ.

Round-Robin Allocation Procedures. The two allocation procedures we use to instantiate the
Plant-and-Steal framework take as input preference orders of agents over items:

• Balanced-Round-Robin: the agents take turns, and at each turn, an agent takes their
highest ranked remaining item. This results in a balanced allocation.

• 1-2-Round-Robin: the agents take turns, where we compensate the second agent, who
might not get their favorite item, to take two items each turn.

In this section, we only prove consistency-robustness guarantees when Balanced-Round-Robin is
used as the allocation procedure. In Appendix E we show different tradeoffs when 1-2-Round-Robin
is used.

ALGORITHM 2: Balanced-Round-Robin
Input :Preference orders of agents over items v = (v1, v2).
Output :An allocation A1

⋃
· A2 = M .

Ai ← ∅ for every agent i ∈ {1, 2}
for r = 1, . . . , ⌈|M |/2⌉ do

A1 ← A1 + v∗1(M \A1 \A2)
A2 ← A2 + v∗2(M \A1 \A2)

Consider the allocation procedure depicted in Algorithm 2. In order to implement the two allocation
procedures, we only needs to receive preference orders over items. Let Ai = (a1i , . . . , a

|Ai|
i ) be agent

i’s allocation by the algorithm, where aki is the k’th choice of agent i. We observe the following.
Observation 4.1. The output (A1, A2) of the Balanced-Round-Robin procedure, satisfies:

1. |A1| = ⌈m2 ⌉, |A2| = ⌊m2 ⌋.
2. For each agent i and round k, aki ∈ {vℓi}ℓ∈[2k]; that is, in round k an agent gets one of their

top 2k items.

Amanatidis et al. [8] show that first allocating large items to agents, and then using a Round-Robin
to allocate the remaining items to the remaining agents, gives a 2-approximation to the MMS. We
observe that for two agents, Round-Robin as is, without the initial step, achieves this approximation
guarantee. The proof of the following Lemma is deferred to Appendix D.
Lemma 4.1. Let (A1, A2) be the allocation of Balanced-Round-Robin. For every agent i,
vi(Ai) ≥ µi/2.

We next use the allocation procedure to instantiate the Plant-and-Steal framework.

Round-Robin-Based Mechanism. The mechanism we analyze, B-RR-Plant-and-Steal, results
from instantiating Plant-and-Steal with Balanced-Round-Robin as A.

We first show that if the predictions correspond to the preference orders of the real valuations, then
B-RR-Plant-and-Steal outputs the same allocation as Balanced-Round-Robin.
Lemma 4.2. When predictions correspond to actual values, B-RR-Plant-and-Steal outputs the
same allocation as Balanced-Round-Robin.

We are now ready to prove the performance guarantees of our mechanisms.

7



Theorem 4.1. Mechanism B-RR-Plant-and-Steal is truthful, 2-consistent and ⌈m2 ⌉-robust.

Proof. By Lemma 3.1, the mechanism is truthful. By Observation 4.1, each agent receives at least
⌊m/2⌋ items; combining with Lemma 3.4, we get that the mechanism is ⌈m2 ⌉-robust. Finally, if pre-
dictions correspond to valuations, by Lemma 4.1 and Lemma 4.2, the allocation is a 2-approximation
to the MMS. Thus, the mechanism is 2-consistent.

We note that by Amanatidis et al. [7], our robustness guarantee matches the optimal obtainable
approximation by any truthful mechanism (up to the rounding).

5 Noisy Predictions

We now analyze Mechanism B-RR-Plant-and-Steal’s performance under varying levels of noise.
Consider the case where the Kendall tau distance between v and p is at most d. Our main theorem in
this section shows that combining the Plant-and-Steal framework with a Round-Robin allocation
procedure obtains O(

√
d)-approximation to the MMS when the Kendall tau distance is d. Missing

proofs of this section appear in Appendix F.

To prove the approximation ratio, we relate the value that agent i obtains from the allocation, vi(Xi),
to their maximin share, µi, by considering the worst possible set of items that agent i might receive
under the Round-Robin procedure when acting on their true preferences. Specifically, we define this
worst-case set as Ri = {v2ji }j∈{1,...,⌊m/2⌋}. In Eq. (2) of Lemma 4.1, we prove that vi(Ri) ≥ µi/2.
Therefore, obtaining an allocation that is a factor of c times vi(Ri) ensures a factor of c/2 of the
MMS value.

We further simplify the analysis by applying the zero-one principle3. The zero-one principle basically
let’s us reduce the analysis to instances where the values are either 0’s or 1’s. For threshold τ ≥ 0, let
hτ (q) = 1 if q ≥ τ and 0 otherwise, and let vτi (S) =

∑
j∈S hτ (vi(j)).

By the zero-one principle, for two sets S, T ⊆M , in order to show that vi(S) approximates vi(T ), it
is enough to show that vτi (S) approximates vτi (T ) for every threshold τ ≥ 0.

Lemma 5.1. For c > 1 and for any two sets S, T ⊆ M , if for every threshold τ ≥ 0, vτi (S) ≥
vτi (T )/c, then vi(S) ≥ vi(T )/c.

Thus, we will show that when the Kendall tau distance is d, for every threshold τ ≥ 0, vτi (Xi) ≥
vτi (Ri)/c for some c = O(

√
d). Recall that Ai is the set of items assigned to i after running the

Round-Robin procedure on the predictions p. We first show that for Kendall tau distance d, the
additive approximation vτi (Ai) gives to vτi (Ri) is

√
d.

Lemma 5.2. If the Kendall tau distance between p and v is at most d, then for any threshold τ ≥ 0,
we have that vτi (Ai) ≥ vτi (Ri)−

√
d.

We note that although vτi (Ai) gives an additive approximation to vτi (Ri), it can still be the case
that the Kendall tau distance is constant, yet vi(Ai) does not give any multiplicative approximation
to µi.4 Therefore, we must use the fact that agent i gets to “steal” an item according to their true
valuation in the Plant-and-Steal procedure in order to get our approximation guarantee. By
combining these results, we prove the following theorem concerning the approximation ratio of
B-RR-Plant-and-Steal’s performance under varying levels of noise, d. 5

Theorem 5.1. Consider a prediction p and valuations v such that Kd(v,p) = d, then Mechanism
B-RR-Plant-and-Steal gives a (2

√
d+ 6)-approximation to the MMS.

3Applied in [11], for instance, in the context of packet routing.
4Indeed, consider the case where there are four goods which both agents value at (1, 1, 0, 0). If agent i’s

prediction orders the last two items higher then the first two items, we will get that vi(Ai) = 0, while µi = 1.
5A similar analysis for Mechanism 1-2-RR-Plant-and-Steal will show a similar dependence on

√
d (up

to constant factors).
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6 Experimental Results

In this section6, we give experiments which illustrate the role of different components of our frame-
work for two players under various noise levels of the predictions. The predictions we use for our
experiments are the predicted values of the items. The noise we introduce permutes the vectors of
values to match the instance’s Kendall tau distance, and uses the permuted vector as prediction. We
show that our framework is almost optimal for small amounts of noise while still showing resilience
for higher noise levels. Moreover, we study the performance of variants which only use specific
components of our framework.

When using predictions, our initial allocation procedure is a cut-and-choose procedure, implemented
as follows:

• We use the first player’s prediction to implement a bag-filling algorithm which sorts the
items by values, and then partitions the items into two sets using a greedy procedure that
assigns each item to the set with current lowest value.

• We use the second player’s prediction to allocate the agent the set with the higher predicted
value of the two.

This allocation ensures that the second agent obtains their MMS value according to the prediction. In
the data we generates, we observe that in a sampled valuation, the two sets chosen by the bag-filling
algorithm gives the two sets the same value, up to 0.5%, which ensures that the lowest valued set
obtains a 1.026-approximation to the MMS.

We inspect the following mechanisms:

1. Random: a mechanism that ignores reports and predictions and randomly partitions the
items into two sets of size m/2.

2. Random-Steal: a mechanism that ignores predictions, randomly partitions the items into
two sets of size m/2, and then implements the stealing phase where each player takes their
favorite item from the other player’s set according to reports.

3. Partition: a mechanism that ignores reports, and partitions the items according to predictions,
using the cut-and-choose procedure described above.

4. Partition-Steal: a mechanism that partitions the items according to predictions, using the
cut-and-choose procedure described above, and then implements the stealing phase where
each player takes their favorite item from the other player’s set according to reports.

5. Partition-Plant-Steal: a mechanism that implements the Plant-and-Steal framework.
partitions the items according to predictions, using the cut-and-choose procedure described
above, “plants” each player’s favorite item according to predictions, and then “steals” each
player’s favorite item from the other player’s set according to reports.

Experiments. We consider two-player scenarios with m = 100 items. For each distance measure,
we generate 1000 valuation profiles. For each pair of valuation profiles and corresponding Kendall
tau distance, we generate 100 predictions based on the distance. We then assess the performance
of the mechanisms described earlier on these instances. We examine two distinct cases regarding
the relationship between the players’ preference orders: the Correlated case, where both players
have identical preference orders, although their valuation magnitudes differ, and the Uncorrelated
case, where the preference orders of the players are generated independently and chosen uniformly
at random. Further details on the procedures used to generate the valuations and predictions are
provided in Appendix A.

Benchmark. We plot the percentage of these instances where both players get at least (1− ϵ) of
their MMS value for ϵ = 0.1, 0.05, 0.02.

Results. The results are shown in Figure 1. We first examine the performance of the two mechanisms
that do not use predictions, Random and Random-Steal. Scenarios with correlated values perform
significantly worse, as there is a non-negligible probability of an unbalanced partition of the relatively
few high and medium valued items in a random partition. For ϵ values of 0.02, 0.05, 0.1, the Random
strategy success rate is 11%, 25%, and 43%, respectively, under correlated preferences, compared

6The experiments, reproducible via Matlab (2022b) at https://tinyurl.com/PlantStealExperiments, were
performed on a standard PC (Intel i9, 32GB RAM) in about 30 minutes.
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Figure 1: Mechanisms: Random (yellow), Random-Steal (cyan), Partition (red), Partition-Steal
(green), Partition-Plant-Steal (blue). Data generation: correlated (first row) and uncorrelated (second
row). Success rate: the percentage of instances where both players receive at least (1− ϵ)-fraction of
their MMS values for different values of ϵ: 0.02 (first column), 0.05 (second column), and 0.1 (third
column).

to 33%, 43%, and 60% under uncorrelated preferences. Moreover, adding the stealing component
significantly improves the success rate only in the uncorrelated case, as Random-Steal achieves
success rates of 66%, 75%, and 87%. In the correlated case, as each player has a highly valuable
item stolen, their obtained value is not expected to increase.

In the mechanisms that use predictions, Partition, Partition-Steal and Partition-Plant-Steal, the
performance degrades as a function of noise, as expected. When comparing the performance of
Partition, which only relies on the prediction component of our framework, and Random-Steal, which
only relies on the stealing component of our framework, we notice that in the uncorrelated case,
for small amount of noise guarantee a higher success rate, while as the noise increases, the stealing
component becomes more instrumental to the performance. This is in tact with the theoretical results,
where using the prediction is crucial to achieve the consistency guarantees, which take place when
the prediction is accurate, while stealing is important to achieve robustness guarantees in case the
prediction is inaccurate. As described above, in the case where the valuations are correlated, stealing
is not expected to help. Interestingly, on fully noisy input, even Random outperforms Partition
as Partition might partition the items into unequally-sized sets, which performs worse than the
equally-sized sets Random outputs.

Our experiments show that Partition-Plant-Steal performs as well as the Partition strategy for small
amounts of noise and outperforms it on uncorrelated instances for large amounts of noise. Moreover,
for any amount of noise, it outperforms Random-Steal and converges to it for a fully noisy input.
This illustrates the “best of both worlds” tradeoff obtained by our framework.

Finally, when comparing the Partition-Plant-Steal strategy to the Partition-Steal strategy, we observe
that Partition-Plant-Steal outperforms Partition-Steal in the correlated case with a small amount
of noise (worst-case scenario) for ϵ = 0.02, as planting guarantees your favorite items would not
be taken. In other scenarios, Partition-Steal outperforms Partition-Plant-Steal because “planting”
removes a valuable item from the player’s set that might be taken otherwise, especially in the
uncorrelated case.
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A Experimental Supplement

Generating valuations. To generate interesting valuations for the players, we use a multi-step
function to generate item values, since if the values are close together, any balanced partition obtains
good MMS guarantees, without considering reports and predictions. Specifically, we consider
a four-step (High/Med/Low/Extra-Low) random valuation function, where an item has a High
valuation with probability 8/m, a Medium valuation with probability 1/4, a Low valuation with
probability 1/2 and an Extra-Low valuation with the remaining probability. A High valuation is
drawn from U [1000, 2000], a Medium valuation is drawn from U [400, 800], a Low valuations is
drawn from U [100, 200] and an Extra-Low valuation is sampled from U [1, 2]. Figure 2 shows the
value distribution generated by this process for two players. We generate values for m = 100 items.

We generate valuations satisfying one of the two types of relations between players’ preferences:

• Correlated: the two preference orders are identical (but not the values).
• Uncorrelated: Both preference orders are chosen independently and uniformly at random.

Generating predictions. To generate predictions, we take valuations and permute elements ran-
domly to create noise. We generate predictions under varying noise levels according to the Kendall
tau distance between the valuations and the predictions. We very the Kendall tau distance between 1
to 2560, where 2560 corresponds to the expected noise level of a random permutation of 100 items.
To randomly choose a permutation of a certain noise level, we start with the ordered permutation
and then choose two indices j < k u.a.r. and swap items r and r + 1 for r ∈ {j, . . . , k − 1} if it
increases the Kendall Tau distance by one. We repeat this process until the distance of the resulting
permutation equals the desired value.

B Related Work

The notion of the maximin share allocation was introduced by Budish [18] as an ordinal notion, and
extended to the notion we adopt by Bouveret and Lemaître [17]. Using machine learning advice in
algorithm design was used in theory [21, 38] and practice [29]. The learning-augmented framework of
studying consistency-robustness tradeoffs was introduced by Lykouris and Vassilvitskii [34]. [35, 39]
studied the performance of algorithms using imprecise predictions.
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Figure 2: Plotting randomly sampled valuations for two players, where the values are sorted such that
lower indexed items have higher values.

Fair division with incentives. The two closest papers to ours are Amanatidis et al. [6, 7]. In [6],
they initiate the study of truthful mechanisms for approximating the MMS value for agents with
additive valuations. They show that no truthful mechanism can get an approximation better than 1/2
for the MMS in the case of 2 agents and 4 items. They give the best known approximation guarantee
for n agents and m items of ⌊m−n+2

2 ⌋. Finally they consider the public ranking model, where the
ranking over items is public information. Using this, they are able to obtain a n+1

2 -approximation
algorithm. One can view this as an algorithm that is given a prediction over the input, but does not
provide robustness guarantees. [7] Fully characterize truthful mechanism for 2 agents with additive
valuations. They use this characterization to provide a strong lower bound of ⌊m2 ⌋ for any truthful
mechanism.

[12] design truthful mechanisms for dichotomous submodular valuations that maximize welfare,
along with desirable fairness properties such as EFX and NSW. For additive binary valuations,
they also maximize the MMS in a truthful manner. [26] bypass the impossibilities imposed by
[7, 37] for truthful fair allocations with indivisible and divisible goods by considering Bayesian
Incentive Compatible mechanisms with symmetric priors. They are able to obtain EF-1 allocations
for indivisible goods and proportional allocations for indivisible goods.

Finally, [9] study the Nash equilibrium for simple mechanisms for agents with additive valuations.
They show that for every number of agents, the Pure Nash equilibrium of the Round-Robin procedure
produces an EF-1 allocation. For two agents, they show that the Pure Nash equilibrium of Plaut and
Roughgarden [36] cut-and-choose procedure produces an EFX and MMS allocation.

1-out-of-k. As stated above, the MMS value of an agent is defined by the highest value an agent
can guarantee for themselves when partitioning the items into n different bundles, where n is the
number of agents, and then getting the lowest valued bundle. Thus, an agent get a value larger than
the worst one-out-of-n bundles that define the MMS.

Noticing that finding an allocation that satisfies the MMS value of each agent is a demanding task
(which was shown to be infeasible in some cases by Kurokawa et al. [30]), Budish [18] relaxed the
notion and defined the 1-out-of-n+ 1 MMS to be the worst bundle out of the bundles that define the
MMS when partitioning the items using an additional bundle. [18] showed it is possible to achieve
this benchmark when adding a small number of access goods. There has been an effort to find the
smallest k for which an allocation that guarantees a 1-out-of-k MMS for each agent exists. [2] were
able to show the existence for k = 2n− 2, [27, 28] achieved k = ⌈ 3n2 ⌉, and recently, [5] showed the
smallest up-to-date k = ⌈ 4n3 ⌉. In our n-agent mechanism, our robustness guarantee approximates
this relaxed benchmark for k = ⌈ 3n2 ⌉.
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Learning-Augmented Mechanisms. Agrawal et al. [1] and Xu and Lu [40] first explored the
learning-augmented framework in a mechanism design setting, where [1] studied the facility loca-
tion problem while [40] applied the framework to several settings such as revenue-maximization,
path auctions, scheduling and two-facility games. [14] give nearly optimal consistency-robustness
tradeoffs to the strategyproof scheduling with unrelated machines. [25] use predictions to design
mechanisms with improved Price of Anarchy bounds. [33, 19] study revenue maximization auctions
with predictions, and [13] devise bicriteria mechanisms.

C Deferred proofs from Section 3

Proof of Lemma 3.1. We show that agent 1 is better off reporting their true valuation, a symmetric
argument holds for agent 2. First, notice that sets T1 and T2 are determined using predictions, ignoring
the reports. Next, notice that the item j̃2 is chosen only using agent 2’s report. Therefore, the only
way agent 1 can affect their allocation is by choosing which item in T2 is allocated to them. agent 1
gets their favorite item in T2 according to their report. Therefore, it is clear that the agent maximize
their utility by reporting their true value.

Proof of Lemma 3.2. Consider some agent i. We claim for every partition of the items into two
non-empty sets, T1, T2, i is always guaranteed to have one of their two favorite items according to
their true valuation vi in Xi. This is because either (1) i has one of their two favorite items in Tℓ,
ℓ ̸= i, and i gets their favorite item from Tℓ; or (2) i’s two favorite items are in Ti, and in this case, i
gets all items from Ti but one, so i is guaranteed one of them.

Proof of Lemma 3.3. Let g ∈ S ∩ {v1i , v2i }, by the definition of S such g exists. Let S′ = S \ {g},
by the definition of S, we have |S′| = k − 1 and vi(S) ≥ v2i + vi(S

′). Consider a partition

(S1, S2) ∈ argmax(T1,T2) : T1
⋃
· T2=M min

j∈{1,2}
vi(Tj).

By definition, µi = minj∈{1,2} vi(Sj). We have,
µi

vi(S)
≤ µi

v2i + vi(S′)

=
minj∈{1,2} vi(Sj)

v2i + vi(S′)

≤
minj∈{1,2} vi(Sj)− vi(S

′)

v2i

≤
minj∈{1,2} vi(Sj \ S′)

v2i

≤
minj∈{1,2}{|Sj \ S′| ·max{vi(ℓ) : ℓ ∈ Sj \ S′}}

v2i
.

≤
(m− k) ·minj∈{1,2} max{vi(ℓ) : ℓ ∈ Sj}

v2i
≤ m− k.

where the before last inequality is since if Sj ⊆ S′ for some j, then v2i + vi(S
′) ≥ µi; therefore

S1 \ S′ and S2 \ S′ are two disjoint non empty subsets and |S1 \ S′|+ |S2 \ S′| = m− k+1, hence
the maximum number of elements in one of these subsets is m− k.

D Deferred proofs from Section 4

Proof of Lemma 4.1. By Observation 4.1, we have vi(a
k
i ) ≥ v2ki , therefore

vi(Ai) =

|Ai|∑
k=1

aki ≥
⌊m/2⌋∑
k=1

v2ki . (1)
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Since i’s favorite item must be absent from some set of the sets defining the MMS value,
m∑

k=2

vki ≥ µi.

Since the vki are ordered, v2ki ≥ v2k+1
i , hence

∑⌊m/2⌋
k=1 v2ki ≥

∑⌊m/2⌋
k=1 v2k+1

i . Therefore,

⌊m/2⌋∑
k=1

v2ki ≥ µi/2 (2)

By Equations (1),(2), we have:

vi(Ai) ≥
⌊m/2⌋∑
k=1

v2ki ≥ µi/2.

Proof of Lemma 4.2. Let j1 be the first item assigned in Balanced-Round-Robin to agent 1. By
definition, j1 is agent 1’s favorite item in M according to p1. Clearly, in Plant-and-Steal, j1
is also agent 1’s favorite item in A1 ⊆ M according to p1. Hence, ĵ1 = j1. By the definition of
Plant-and-Steal, j1 ∈ T2. Since we assume the prediction corresponds to agent 1’s actual value,
j1 is also agent 1’s favorite item in T2 ⊆M , which implies j̃1 = j1.

Similarly Let j2 be the first item assigned in Balanced-Round-Robin to agent 2. By definition, j2
is agent 2’s favorite item in M \ {j1} according to p2. Since j1 ∈ A1, A2 ⊆M \ {j1}. Therefore,
j2 is also agent 2’s favorite item in A2 according to p2. Hence, ĵ2 = j2. Since we established that
ĵ1 = j1, we have that T1 ⊆ M \ {j1} and j2 ∈ T1. Since we assume the prediction corresponds
to agent 1’s actual value, j2 is also agent 1’s favorite item in T1, implying j̃2 = j2. We get that
X1 = A1 and X2 = A2 as required.

E 1-2-RR-Plant-and-Steal Mechanism: A 3/2-consistent, ⌊2m/3⌋-robust
Mechanism

In this section, we show that using a modified round-robin allocation procedure to instantiate the
Plant-and-Steal framework give an improved 3/2 consistency guarantee, while maintaining O(m)
robustness. Consider the Balanced-Round-Robinallocation procedure depicted in Algorithm 2.
One can show that the agent that picks first actually gets a value at least as large as their MMS, while
for the second agent this analysis is indeed tight.7 In order to compensate agent 2, 1-2-Round-Robin
lets this agent pick two items each round. See Algorithm 3 for details.

ALGORITHM 3: 1-2-Round-Robin
Input :Preference orders of agents over items v = (v1, v2).
Output :An allocation A1

⋃
· A2 = M .

Ai ← ∅, for every agent i ∈ N
for r = 1, . . . , ⌈|M |/3⌉: do

A1 ← A1 + v∗1(M \A1 \A2)
A2 ← A2 + v∗2(M \A1 \A2)
A2 ← A2 + v∗2(M \A1 \A2)

Let aki be agent i’s kth choice in 1-2-Round-Robin, we observe the following.
Observation E.1. The output (A1, A2) of the 1-2-Round-Robin procedure, satisfies:

1. |A1| = ⌈m3 ⌉ and |A2| = ⌊ 2m3 ⌋.
2. ak1 ∈ {vℓ1}ℓ∈[3k−2], a

2k−1
2 ∈ {vℓ2}ℓ∈[3k−1] and a2k2 ∈ {vℓ2}ℓ∈[3k].

7Consider the case where the agents’ valuations are (m−1, 1, . . . , 1). According to Round-Robing allocation,
the first item will be assigned to agent 1, and agent 2 will have m/2 items of value 1, while µ2 = m− 1.

17



Amanatidis et al. [6] show that 1-2-Round-Robin guarantees each agent 2/3 of their MMS. We
provide the proof for completeness.

Lemma E.1 (Amanatidis et al. [6]). Let (A1, A2) be the allocation of 1-2-Round-Robin. For every
agent i, vi(Ai) ≥ 2µi/3.

Proof. We first prove the approximation for player 1 (the first player to be allocated). First, observe
that v1(M) ≥ 2µ1. Let I1 = {v3k−2

1 : k = 1, . . . , ⌈m/3⌉} be the worst possible allocation agent
1 might get in the 1-2-Round-Robin allocation. Notice that v1(I1) ≥ v1(M)/3 ≥ 2µ1/3. By
Observation E.1, v1(ak1) ≥ v3k−2

1 . Therefore, v1(A1) ≥ v1(I1) ≥ 2µ1/3.

Now consider player 2. As stated in the proof of Lemma 4.1, v2(M \ v12) ≥ µ2. Let

Ia2 = {v3k−1
2 : k ∈ N>0 ∧ 3k − 1 ≤ m} and Ib2 = {v3k2 : k ∈ N>0 ∧ 3k ≤ m}.

First, notice that
v2(I

a
2 ∪ Ib2) ≥ 2v2(M \ v12)/3 ≥ 2µ2/3.

Moreover, by Observation E.1, we have, v2(a2k−1
2 ) ≥ v3k−1

2 , and v2(a
2k
2 ) ≥ v3k2 . Therefore,

v2(A2) ≥ v2(I
a
2 ∪ Ib2) ≥ 2µ2/3.

The mechanism we consider in this section, 1-2-RR-Plant-and-Steal, results from instantiating
Plant-and-Steal with 1-2-Round-Robin as A.

The next lemma states that if the predictions correspond to the preference orders of the real valuations,
then 1-2-RR-Plant-and-Steal outputs the same allocation as 1-2-Round-Robin. The proof is
omitted as it is identical to the proof of 4.2.

Lemma E.2. When predictions correspond to actual values, 1-2-RR-Plant-and-Stealoutputs
the same allocation as 1-2-Round-Robin.

We next show that in 1-2-RR-Plant-and-Steal we are able to achieve a better consistency, while
slightly weakening the robustness guarantee.

Theorem E.1. Mechanism 1-2-RR-Plant-and-Steal is truthful, 3/2-consistent and ⌊ 2m3 ⌋-robust.

Proof. By Lemma 3.1, the mechanism is truthful. By Observation E.1, each agent receives at least
⌈m/3⌉ items; combining with Lemma 3.4, we get that the mechanism is ⌊ 2m3 ⌋-robust. Finally,
if predictions correspond to valuations, by Lemma E.1 and Lemma E.2, the allocation is 3/2-
approximation to the MMS. Thus, the mechanism is 2/3-consistent.

F Deferred proofs from Section 5

Proof of Lemma 5.1. Let S = {s1, . . . , sk} (|S| = k) and T = {t1, . . . , tℓ} (|T | = ℓ). We have the
following.

vi(S) =

k∑
j=1

vi(sj) =

k∑
j=1

∫ ∞

0

hτ (vi(sj))dτ =

∫ ∞

0

k∑
j=1

hτ (vi(sj))dτ =

∫ ∞

0

vτi (S)dτ

≥
∫ ∞

0

vτi (T )/c dτ =
1

c

∫ ∞

0

ℓ∑
j=1

hτ (tj)dτ =
1

c

ℓ∑
j=1

∫ ∞

0

hτ (tj)dτ =
1

c

ℓ∑
j=1

vi(tj)

= vi(T )/c,

where we use the identity
∫∞
0

hτ (q)dτ = q.

Proof of Lemma 5.2. Let ⌊m2 ⌋ ≤ mi ≤ ⌈m2 ⌉ be the number of items agent i gets by Mechanism
B-RR-Plant-and-Steal. Let Ai = {a1i , a2i , . . . , a

mi
i } be the items assigned to agent i in the
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Round-Robin according to the predicted orderings p, where aℓi is the item allocated to i in the ℓth

round of Round-Robin. First, by Observation 4.1, we have:
aℓi ∈ {p

j
i}j∈{1,...,2ℓ}. (3)

For a fixed τ ≥ 0, let Lτ = vτi (Ri) be the number of values larger than threshold τ in Ri. We show
that if the Kendall tau distance is at most d, then it must be the case that

vτi (Ai) ≥ Lτ −
√
d. (4)

Note that hτ (v
k
i ) = 1 for k ≤ 2 · Lτ since Ri gets every second item by the sorted values of agent i.

This implies that if hτ (v1(a
ℓ
i)) = 0 then aℓi = vki for k > 2 · Lτ . Moreover, if ℓ ≤ Lτ then aℓi = pki

for k ≤ 2 · Lτ by Eq. (3). Thus, if
∑Lτ

k=1 hτ (v1(a
k
i )) < Lτ −

√
d there are strictly more than ⌈

√
d⌉

items whose rank according to the true valuation is at most 2 · Lτ , and their rank according to the
prediction is at least 2 · Lτ + 1. We show that this implies that the Kendall tau distance is larger than
d, yielding a contradiction. Formally, let

G1 = {vk1}k∈{1,...,2·Lτ} \ {p
k
1}k∈{1,...,2·Lτ}

be the set of items whose rank is at most 2 · Lτ according to the real values but not according to the
predictions, and let

G2 = {vk1}k∈{2·Lτ+1,...,m} \ {pk1}k∈{2·Lτ+1,...,m}
be the set of items whose rank is strictly larger than 2 · Lτ according to the real values but not
according to the predictions. By the above, |G1| = |G2| > ⌈

√
d⌉, and for each pair j ∈ G1, j

′ ∈ G2,

1. j rank according to vi is at most 2 · Lτ and j′ rank according to vi is at least 2 · Lτ + 1;

2. j′ rank according to pi is at most 2 · Lτ and j rank according to pi is at least 2 · Lτ + 1.

That is, j and j′ are ordered oppositely in the ordering according to pi and vi. Since there are |G1| ·
|G2| > d such pairs, we get that the Kendall tau distance is strictly greater than d, a contradiction.

Proof of Theorem 5.1. Recall that, in Eq. (2) of Lemma 4.1, we establish that:
vi(Ri) ≥ µi/2 (5)

In addition, we apply the zero-one principle to show that Lemma 5.1 holds for the sets Xi and Ri

with c =
√
d+ 3. The proof follows by combining these two results.

Notice that |Ai \Xi| ≤ 2, because in the “stealing” phase, agent i might not take the “planted” item
from Ai back, and the other agent might take one item from Ai.8 Moreover, by Lemma 3.2, either v1i
or v2i are in Xi. Therefore, for every threshold τ ≥ 0,

vτi (Xi) ≥ max{hτ (v
2
i ), v

τ
i (Ai)− 2}

≥ max{hτ (v
2
i ), v

τ
i (Ri)−

√
d− 2}, (6)

where the inequality follows Lemma 5.2.

If hτ (v
2
i ) = 0, then vτi (Ri) ≤ |Ri| · hτ (v

2
i ) = 0, and Lemma 5.1 holds with c = 0. Therefore, the

interesting case is when hτ (v
2
i ) = 1. Consider the ratio vτ

i (Ri)
vτ
i (Xi)

which we want to bound. Since

vτi (Xi) ≥ hτ (v
2
i ) = 1, vτi (Ri) ∈ [1,

√
d+ 3] implies that

vτi (Ri)

vτi (Xi)
≤ vτi (Ri) ≤

√
d+ 3.

On the other hand, by Eq. (6), setting vτi (Ri) =
√
d + 3 + δ for δ > 0 implies that vτi (Xi) ≥

vτi (Ri)−
√
d− 2 ≥ 1 + δ, which yields

vτi (Ri)

vτi (Xi)
≤
√
d+ 3 + δ

1 + δ
≤
√
d+ 3.

We get that Lemma 5.1 holds for Xi and Ri with c =
√
d+ 3. Thus,

vi(Xi) ≥ vi(Ri)/(
√
d+ 3) ≥ µi/(2

√
d+ 6),

where the last inequality follows Eq. (5).
8In fact, this holds for any noise in the valuations of the other agent.
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G Non-ordering Predictions

In this Section, we consider the case where predictions are not necessarily preference orders over
items. In Section G.1, we show that for any prediction the mechanism might get, consistency is
bounded away from 1. Sections G.2, G.3, we study succinct predictions, i.e. predictions about general
structure of the preferences of two agents. Section G.2 presents a 4-consistent and ⌈m/2⌉-robust
mechanism, whose consistency relies on the correctness of only a logm-bit prediction about the
preferences of the two agents. In Section G.3, we show that a 2 + ϵ-consistent and ⌈m/2⌉-robust
mechanism exists, whose consistency relies on correctly predicting only O(logm/ϵ) bit about the
preferences of the two agents.

G.1 No Mechanism with < 6/5 Consistency and Bounded Robustness

In [7] they define the following family of mechanisms.

Definition G.1 (Singleton Picking-Exchange Mechanisms [7]). A mechanism X is a singleton
picking-exchange mechanism if for each i ∈ {1, 2}, there is exactly one of two sets: either Ni ⊆M ,
or Ei = {ℓi} for a single item ℓi ∈M . If Ni is non-empty, then the mechanism lets player j ̸= i pick
item ℓ ∈ Ni that maximizes vj(ℓ), and i gets Ni \ {ℓ}. If both E1, E2 are non-empty, then the agents
exchange the two items ℓ1 ∈ E1 and ℓ2 ∈ E2 if v1(ℓ2) > v1(ℓ1) and v2(ℓ1) > v1(ℓ2). Notice that if
m > 2, either E1 or E2 is empty and there will be no exchange.

[7] showed the following.

Lemma G.1. In order for a mechanism to be truthful and have a bounded approximation, it has to
be a singleton picking-exchange mechanism

We make use of this characterization in our impossibility.

Theorem G.1. For any ϵ > 0, there is no truthful a mechanism with consistency 6/5−ϵ and bounded
robustness.

Proof. Consider the case where p1 = p2 = (1/2, 1/2, 1/3, 1/3, 1/3). Notice that for the predictions,
µ1 = µ2 = 1. We show that for any singleton-picking-exchange mechanism, no agent obtains
both large items (of value 1/2). Consider agent 1 (the argument is symmetric for agent 2). If N1 is
non-empty, then if both large items are in N1, surely 1 will only get one of them. If both large items
are in N2, then agent 2 will surely pick one of them, and agent 1 will only get one of them. If one
large item is in N1 and the other is in N2, each agent i will pick the large item in Ni. If agent 2 has a
large item in E2, then since N1 is non-empty, E1 is empty and agent 2 will keep the large item. Now
consider the case where E1 is non-empty. In this case, E1 contains one item, and N1 is empty. Since
E2 can contain at most one item, and there are more than 2 items, in this case, E2 = ∅, and |N2| = 4.
Therefore, N2 contains at least one large item. Since agent 2 will always pick the large item, agent
one only gets one large item. We conclude that for any singleton picking-exchange mechanism, the
large items are split among the agents. Since there are 3 small items, there must be an agent that gets
at most one small item, and this agent has an overall value of at most 1/2 + 1/3 = 5/6, while the
MMS is 1. Thus the claim follows.

G.2 4-Consistent, (m− 1)-Robust Mechanism Using a 3 logm+ 1-Space Prediction

Let us formally define a mechanism that uses a space-s prediction

Definition G.2. A learning-augmented mechanism is a space-s mechanism if the prediction space P
can be represented by the elements of {0, 1}s.

We first give a simple mechanism that only requires 3 logm + 1 bits of information about the
valuations v1 and v2. It will only need to know an index j0 in [m] together with a bit b to produce
an approximately-optimal allocation, and an additional 2 log n bits to implement the planting phase.
The mechanism will utilize the Plant-and-Steal framework in conjunction with the well-known
bag-filling allocation procedure:

We see that, in order to predict the behaviour of the mechanism above, one only needs to predict
accurately the index j0 on which the mechanism terminates, as well as a bit b ∈ {1, 2} that encodes
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MECHANISM 4: Bag-Filling
Input :Preference orders of agents over items v = (v1, v2) on a set of items M = [m]
Output :Allocations A1

⋃
· A2 = M

j ← 1
for j = 1, . . . ,m: do

if v1([j])
v1([m])

≥ 1
2

then Output (A1, A2)← ([j], [m] \ [j]) and terminate

if v2([j])
v2([m])

≥ 1
2

then Output (A1, A2)← ([m] \ [j], [j]) and terminate

whether the algorithm terminates due to the condition v1([j])
v1([m]) ≥

1
2 being satisfied or due to the

condition v2([j])
v2([m]) ≥

1
2 being satisfied. This can be encoded using logm+ 1 bits.

We also see that the The Plant-and-Steal framework when used with the Bag-Filling allocation
procedure gives a truthful 4-consistent and a m− 1-robust9 allocation mechanism. The truthfulness
and robustness follow immediately from Lemmas 3.1 and 3.4 respectively.

The 4-consistency holds for the following reason. It is a well-known fact (see i.e. [10]) that the
partition (A1, A2) given by the bag-filling algorithm satisfies v1(A1) ≥ µ1/2 and v2(A2) ≥ µ2/2.
By inspecting the Plant-and-Steal framework (Algorithm 1), we see that both agent 1 and agent
2 will either (i) retain their most preferred item in A1 and A2 respectively or (ii) Lose this item, but
obtain an item that they prefer even more. Overall, this implies that in the worst case the difference
v1(A1) − v1(X1) will equal to the value of the second-most favorite item of Agent 1 in A1. This
implies that v1(X1) ≥ 1

2v1(A1) ≥ µ1

4 . Analogously, we see that v1(X2) ≥ 1
2v1(A2) ≥ µ2

4 .

G.3 2 + ϵ-Consistent, ⌈m2 ⌉-Robust Mechanism Using a O(logm/ϵ)-Space Prediction

We now show that a better consistency of 2 + ϵ can be achieved at the cost predicting O(logm/ϵ)
bits of information about the valuations v1 and v2. We will also obtain a better robustness of ⌈m2 ⌉. To
do this, we will use the Plant-and-Steal framework in conjunction with the Cut-and-Balance
allocation procedure. We first explain how the mechanisms above can be implemented by only

ALGORITHM 5: Cut-and-Balance
Output :Allocations A1

⋃
· A2 = M

Consider a partition S1

⋃
· S2 = M satisfying |S1| ≥ |S2| and

min
j∈{1,2}

v1(Sj) ≥ (1− ϵ)maxT1
⋃
· T2=M min

j∈{1,2}
v1(Tj) = (1− ϵ)µ1

Let S′ ⊂ S1 be a set of ⌊m/2⌋ − |S2| items satisfying
• v1(S

′) ≤ v1(S1)/2

• if |S2| > 1 additionally satisfying v1(S
′) ≤ v1(S1 \ {ĵ, ĵ′})/2, for some

ĵ ∈ argmaxj∈S1 v1(j) and ĵ′ ∈ argmaxℓ∈S1\ĵ v1(ĵ)

Set S̃1 ← S1 \ S′ and S̃2 ← S2 ∪ S′

Let i2 ← argmaxi∈{1,2} p2(S̃i) and let i1 be the index of the other bundle
Set A1 ← Si1 and A2 ← Si2 , and output the allocation (A1, A2)

obtaining O(logm/ϵ) bits of information about the valuations v1 and v2. This follows from the
following proposition, the proof of which is given in Appendix G.4.
Proposition G.1. Suppose M = [m]. There is a partition M = L1

⋃
· L2

⋃
· S and indices

α1, β1, α2 and β2 with |L1| + |L2| ≤ O
(
1
ϵ

)
, such that the partition M = S1

⋃
· S2 de-

fined as S1 = L1

⋃
(S

⋂
[α1, β1]) and S2 = L2

⋃
(S

⋂
[α2, β2]) satisfies |S1| ≥ |S2| and

min(v1(S1), v1(S2)) ≥ (1− ϵ/4)µ1.

Additionally, there exist integers α3, β3, α4 and β4 such that the set S′ = S
⋂

([α3, β3]
⋃
[α4, β4])

satisfies |S′| = ⌊m/2⌋ − |S2|, S′ ⊂ S1, v1(S′) ≤ v1(S1)/2 and if |S2| > 1 then S′ also satisfies
v1(S

′) ≤ v1(S1 \ {ĵ, ĵ′})/2, where ĵ ∈ argmaxj∈S1
v1(j) and ĵ′ ∈ argmaxj∈S1\ĵ v1(j).

9Note that min(|A1|, |A2|) ≤ m− 1 which implies that the algorithm is (m− 1)-robust.
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The main ideas for proving Proposition G.1 are: (i) using the sets L1 and L2 to handle elements
x whose value v(x) is large, and separate the remaining items into the set S (ii) Showing that the
remaining items can be separated into well-behaved subsets of the form S

⋂
[αi, βi].

The proposition above implies that the sets S1, S2 and S′ can be represented exactly via sets L1

and L2, together with the indices {α1, · · · , α4, β1, · · ·β4}. We will also need to know the index
i2 ∈ {1, 2}. Since the sets L1 and L2 have a size of O(1/ϵ), all this information amounts to
O(logm/ϵ) bits as claimed.

The following proposition implies the truthfulness, the robustness and the consistency of the mecha-
nism that combines the Cut-and-Balance allocation procedure with the Plant-and-Steal frame-
work.
Theorem G.2. The Plant-and-Steal framework, when used with Cut-and-Balance allocation
procedure, gives a truthful, 2 + ϵ-consistent and a ⌈m/2⌉-robust allocation mechanism.

Proof. Truthfulness follows from Lemma 3.1. Since the sets A1 and A2 both have size at most
⌈m/2⌉, the robustness follows via Lemma 3.4.

The proof of (2 + ϵ)-consistency is deferred to Appendix G.5. The main challenge for showing
the bound on consistency is the fact that both the Cut-and-Balance allocation procedure and the
Plant-and-Steal framework can reduce the consistency by a factor of 2. Naively, one would expect
the overall consistency to be close to 4, given that each stage can lose a factor of 2 in consistency.
However, our insight is that for the instances, on which the Cut-and-Balance allocation procedure
loses a factor of 2 in consistency, the Plant-and-Steal framework will have consistency close to 1,
and vice versa. This allows us to prove a tighter bound of 2 + ϵ on the consistency of our overall
algorithm.

G.4 Proof of Proposition G.1

We first show the following, which implies the first half of Proposition G.1.
Proposition G.2. There exists a partition M = L1

⋃
· L2

⋃
· S and and indices α1, α2, β1, β2 in [m]

such that M = [α1, β1]
⋃
· [α2, β2], for the sets S1 = L1∪(S∩ [α1, β1]) and S2 = L2∪(S∩ [α2, β2])

we have

• min{v1(S1), v1(S2)} ≥ (1− ϵ/8)µ1

• |L1|+ |L2| ≤ ⌈8ϵ ⌉+ 2

• |S1| ≥ |S2|.

• For every x in L1 and y in S1 we have v1(x) > v1(y). Analogously, for every x in L2 and y
in S2 we have v1(x) > v1(y)

• There are ĵ, ĵ′ ∈ L1 satisfying ĵ ∈ argmaxℓ∈S1
v1(ℓ) and ĵ′ ∈ argmaxℓ∈S1\ĵ v1(ℓ),

We do this by inspecting two types of items, large items, with value greater than ϵµ1/4, and small
items items with value at most ϵµ1/4. We first show that there are O(1/ϵ) large items, therefore,
separating these items into two bundles require at most O(1/ϵ) intervals. Moreover, we can find a
separation of the larges items into two sets, L1, L2, and a single index j ∈ [m] such that all small
items to the left of j (including) together with L1 form S1, and all items to the right of j (excluding)
together with L2 form S2, such that S1, S2 satisfy the approximation requirement. It is easy to see
that this increases the number of intervals by at most 1.

We start by showing there are not too many large items.
Lemma G.2. There are at most ⌈ 8ϵ ⌉ items with value strictly greater than ϵµ1 for agent 1.

Proof. Let items with value greater than ϵµ1/4 be the large items. Suppose there are at least ⌈ 8ϵ ⌉+ 1

large items. If ⌈ 8ϵ ⌉ is even, consider a partition (S1, S2) such that each Si gets at least ⌈ 8ϵ ⌉/2 large
items and the rest are allocated arbitrarily. If ⌈ 8ϵ ⌉ is odd, consider the allocation in which each Si

gets (⌈ 8ϵ ⌉+ 1)/2 large items and the rest are allocated arbitrarily. In either case, each Si gets at least
⌈ 8ϵ ⌉/2 ≥

4
ϵ large items. Thus, min{v1(S1), v1(S2)} > ϵµ1/4 · 4ϵ = µ1, a contradiction.
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We are now ready to prove Proposition G.2.

Proof of Proposition G.2. Consider the set of large items, L = {j ∈ [m] : v1(j) > ϵµ1/4}, and let
S = M \ L be the set of small items.

We give a constructive proof which finds both sets L1, L2 and an index j satisfying the condition
stated in the lemma. Let

(L1, L2) ∈ argmax(T1,T2) : T1
⋃
· T2=L min

j∈{1,2}
v1(Sj).

We use the following procedure to find j.

1. Let jℓ = 0 and jr = m.

2. While jℓ ̸= jr:

(a) Let Sℓ = L1 ∪ {j′ ∈ S : j′ ≤ jℓ} and Sr = L2 ∪ {j′ ∈ S : j′ > jr}.
(b) If v1(Sℓ) < v1(Sr) :

• jℓ := jℓ + 1.
(c) Else:

• jr := jr − 1.

3. Set j := jℓ = jr.

We consider two cases:

Case 1: j = 0 (or symmetrically, j = m). Without loss of generality, suppose that j = m. We
first show that if v1(S1) < v1(S2) then min{v1(S1), v1(S2)} = µ1. Notice that since S1 gets all
the small items, it must be the case that v1(L1) < v1(L2). Suppose there’s a different partition
T1

⋃
· T2 such that min{v1(T1), v1(T2)} > min{v1(S1), v1(S2)}. Without loss of generality, let

v1(T1 ∩ L) ≤ v1(T2 ∩ L) (otherwise, we can rename both bundles). By the definition of L1, L2, it
must be the case that v1(L1) ≥ v1(T1 ∩ L). Thus, Since T1 \ (T1 ∩ L) ⊆ S, it must be that

v1(S1) = v1(L1)+v1(S) ≥ v1(T1∩L)+v1(T1 \(T1∩L)) = v1(T1) ≥ min{v1(T1), v1(T2)},

a contradiction.

On the other hand, if v1(S1) ≥ v1(S2) = v1(L2), by condition 2b of the above procedure, it must be
the case that when jℓ was equal m− 1,

v1(Sℓ) < v1(Sr) = v1(L2) = v1(S2).

Thus,
v1(S1) = v1(Sℓ) + v1(m) < v1(S2) + ϵµ1/4.

We get that

v1(S2) ≥ v1(S1)− ϵµ1/4 ≥ 2µ1 − v1(S2)− ϵµ1/4 ⇒
min{v1(S1), v1(S2)} = v1(S2) ≥ (1− ϵ/8)µ1, (7)

where the second inequality follows since 2µ1 ≤ v1(S1) + v1(S2).

Case 2: 0 < j < m. In this case, since both jℓ and jr were moved, there were some values of jℓ
and jr such that v1(Sℓ) ≤ v1(Sr) and some values such that v1(Sℓ) > v1(Sr). Assume initially that
v1(Sℓ) ≤ v1(Sr). Since at each step of the procedure, the the lower-valued bundle can increase by at
most ϵµ1/4, when the first item is added to Sℓ such that v1(Sℓ) > v1(Sr), it must be the case that
v1(Sℓ) ≤ v(Sr)+ ϵµ1/4. It is easy to see that the invariant where |v1(Sℓ)− v1(Sr)| ≤ ϵµ1/4 is kept
throughout the run of the procedure. Therefore, this also holds for the final S1 and S2. Thus, we can
use the same reasoning of Eq. (7) to conclude that min{v1(S1), v1(S2)} ≥ (1− ϵ/8)µ1.

Thus, the sets S1 and S2 have a form S1 = L1∪ (S∩ [1, j]) and S2 = L2∪ (S∩ [j+1,m]) and have
the form required. If |S1| < |S2| we can swap our definitions for the sets S1 and S2, thus ensuring
that |S1| > |S2|. Due to our definitions of L1 and L2 we have for every x in L1 and y in S1 we have
v1(x) > v1(y). Analogously, for every x in L2 and y in S2 we have v1(x) > v1(y).
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We can ensure that There are ĵ, ĵ′ ∈ L1 satisfying

ĵ ∈ argmax
ℓ∈S1

v1(ℓ) and ĵ′ ∈ arg max
ℓ∈S1\ĵ

v1(ℓ),

by adding such values from S ∩ [α1, β1] to L1 (we see that after this all other properties still hold).
Overall, we see that |L1|+ |L2| ≤ ⌈ 8ϵ ⌉+ 2, as required.

Now, we proceed to proving the second half of Proposition G.1. We will need the following lemma.
Lemma G.3. Let k1 and k2 be positive integers satisfying k1 > k2, and let f be a function mapping
[k1] to non-negative real numbers. Then, there exist a pair of integers α, β, α′ and β′ in [k1] such
that |[α, β] ∪ [α′, β′]| = k2 and∑

i∈[α,β]∪[α′,β′] f(i)

k2
≤

∑
i∈[k1]

f(i)

k1

Proof. We prove the lemma using the probabilistic method. Let j be a uniformly random integer in
[k1], and choose α, β, α′ and β′ such that

[α, β] ∪ [α′, β′] = {j, j + 1 mod k1, · · · , j + k2 − 1 mod k1}.

We see that indeed a set chosen as above can be represented as a union of two intervals. Now, since j
is chosen uniformly at random form [k1], we see that for every element i in [k1] we have

Pr
j∼[k1]

[i ∈ {j, j + 1 mod k1, · · · , j + k2 − 1 mod k1}] =
k2
k1

.

Thus via linearity of expectation we have:

Ej∼[k1]

 1

k2

∑
i∈{j,j+1 mod k1,··· ,j+k2−1 mod k1}}

f(i)}

 =
1

k1

∑
i∈[k1]

f(i).

Thus, since f(i) is non-negative for all values of i, we see that for some specific choice of j it has to
be the case that

1

k2

∑
i∈{j,j+1 mod k1,··· ,j+k2−1 mod k1}}

f(i)} ≤ 1

k1

∑
i∈[k1]

f(i),

which finishes the proof.

Now, we apply the lemma above. If m < 4⌈ tϵ⌉+ 2 we can satisfy Proposition G.2 by:

1. First choosing a partition M = S1

⋃
· S2 such that min(v1(S1), v1(S2)) ≥ µ1 and |R1| ≥

|R2|.
2. Define L2 := S2, put the smallest ⌊m/2⌋ − |S2 elements of S1 into S, and define L1 to

contain the rest of elements in S1.

3. Define α1 = α3 = 1, β1 = β3 = m, α2 = β2 = α4 = β4 = m+ 1.

Overall, this allocates S′ to be the bottom ⌊m/2⌋ elements of S1. We see that this suffices to guarantee
the properties that S′ needs to satisfy in Proposition G.1.

Therefore, henceforth we can assume that m > 4⌈ tϵ⌉+ 2. Since |S1| ≥ m/2 and |L1| ≤ 8
ϵ + 2, and

S1 = L1 ∪ (S ∩ [α1, β1]) this implies that |S ∩ [α1, β1])| > 3
⌈
t
ϵ

⌉
> m/2 Thus, we can ensure that

|S′| = ⌊m/2⌋ − |S2| using a subset S′ ⊂ S ∩ [α1, β1]).

If |S2| = 1 we only need choose S′ to satisfy |S′| = ⌊m/2⌋ − |S2| and v1(S
′) ≤ v1(S1 \ {ĵ, ĵ′})/2.

First of all, since every element in L1 is larger than any element in S ∩ [α1, β1]), we see that this is
also true in average ∑

ℓ∈S1
v1(ℓ)

|S1|
≤

∑
ℓ∈S∩[α1,β1])

v1(ℓ)

|S ∩ [α1, β1])|
(8)
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Then, applying Lemma G.3 to the set S ∩ [α1, β1]) we see that there exist disjoint subsets [α3, β3]
and [α4, β4] of [α1, β1] such that |S ∩ ([α3, β3]

⋃
[α4, β4]))| = ⌊m/2⌋ − |S2|∑

ℓ∈S∩[α1,β1])
v1(ℓ)

|S ∩ [α1, β1])|
≤

∑
ℓ∈S∩([α3,β3]

⋃
[α4,β4]))

v1(ℓ)

|S ∩ ([α3, β3]
⋃
[α4, β4]))|

(9)

Combing Equations 8 and 9, we see that taking S′ = S ∩ ([α3, β3]
⋃
[α4, β4]) satisfies v1(S

′) ≤
v1(S1)/2 and the other requirements of Proposition G.1.

Now, suppose |S2| > 1. Since by Proposition G.2, the set S does not contain the two largest elements
ĵ and ĵ′ of S1, as well as the fact that every element in L1 is at least as large as any element in
S ∩ [α1, β1]), we see that every every element in S1 \ {ĵ, ĵ′} is either in S ∩ [α1, β1]) or greater than
every element in S ∩ [α1, β1]). this implies that:∑

ℓ∈S1\{ĵ,ĵ′} v1(ℓ)

|S1| − 2
≤

∑
ℓ∈S∩[α1,β1])

v1(ℓ)

|S ∩ [α1, β1])|
(10)

Then, we can again apply applying Lemma G.3 to the set S ∩ [α1, β1]) we see that there exist disjoint
subsets [α3, β3] and [α4, β4] of [α1, β1] such that |S ∩ ([α3, β3]

⋃
[α4, β4]))| = ⌊m/2⌋ − |S2|∑

ℓ∈S∩[α1,β1])
v1(ℓ)

|S ∩ [α1, β1])|
≤

∑
ℓ∈S∩([α3,β3]

⋃
[α4,β4]))

v1(ℓ)

|S ∩ ([α3, β3]
⋃
[α4, β4]))|

(11)

Combing Equations 10 and 11, we see that taking S′ = S ∩ ([α3, β3]
⋃
[α4, β4]) satisfies v1(S′) ≤

v1(S1\{ĵ, ĵ′})/2 as required in Proposition G.1. Note that this also implies that v1(S′) ≤ v1(S1})/2
since ĵ, ĵ′ have the top two largest values of v1 in S1. Overall, this finishes the proof of Proposition
G.1.

G.5 Proof of (2 + ϵ)-consistency.

It remains to show that the algorithm is 2 + ϵ-consistent. We will be referencing the variables
ĵ1, ĵ2, j̃1, j̃2, T1 and T2 within the Plant-And-Steal framework (Algorithm 1).

We first reason about agent 2. First, notice that since agent 2 has a higher value for S̃i2 ,

v2(S̃i2) ≥ µ2.

Since the mechanism had a chance to pick item ĵ2 from T1 as j̃2, it must be the case that v2(j̃2) ≥
v2(ĵ2) (and possibly j̃2 = ĵ2). If j̃1 = ĵ1, then T2 \ j̃1 = S̃i2 \ ĵ2, and

µ2 ≤ v2(S̃i2) = v2(S̃i2 \ ĵ2) + v2(ĵ2) ≤ v2(T2 \ j̃1) + v2(j̃2) = v2(X2).

Otherwise, j̃1 ∈ S̃i2 , and

S̃i2 \ ĵ2 \ j̃1 ⊂ T2 \ j̃1 ⇒ v2(S̃i2 \ ĵ2 \ j̃1) ≤ v2(T2 \ j̃1). (12)

Since ĵ2 is the item with the highest value for agent 2 in S̃i2 , v2(j̃2) ≥ v2(ĵ2) ≥ v2(k1). Combining
with Eq. (12), we get that

v2(T2 \ j̃1 ∪ {j̃2}) ≥ v2(S̃i2 \ ĵ2).
Moreover,

v2(T2 \ j̃1 ∪ {j̃2}) ≥ v2(j̃2) ≥ v2(ĵ2).

Thus,
v2(X2) = v2(T2 \ j̃1 ∪ {j̃2}) ≥ v2(S̃i2)/2 = µ2/2,

as desired.

It is left to show that v1(X1) ≥ µ1/(2 + ϵ). If i1 = 2, then

v1(S̃i1) = v1(S̃2) ≥ v1(S2) ≥ (1− ϵ/4)µ1.
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In this case, the same exact arguments used for agent 2 can be harnessed to show that v1(X1) ≥
(1− ϵ/4)µ1/2 ≥ µ1/(2 + ϵ). Thus, it is left to consider the case where i1 = 1.

Consider the (S1, S2) partition that is set in the first step of Cut-and-Balance-and-Choose. Since
v1(S

′) ≤ v1(S1)/2, we have

v1(S̃1) ≥ v1(S1)/2 ≥ (1− ϵ/4)µ1/2 ≥
µ1

2 + ϵ
.

If j̃2 = ĵ2, we have that

v1(X1) = v1(S̃1 ∪ {j̃1} \ {ĵ1}) ≥ v1(S̃1) ≥
µ1

2 + ϵ
,

where the first inequality follows since v1(j̃1) ≥ v1(ĵ1).

Note also that if |S2| = 1 i.e., S2 = {a}, if ĵ2 ̸= a then v1(X1) ≥ v1(S2) since a ∈ T2, similarly if
j̃2 ̸= a then v1(X1) ≥ v1(S2), finally we have ĵ2 = k2 = a and v1(X1) ≥ µ1/(2 + ϵ) an in the first
case.

Therefore, we assume j̃2 ̸= ĵ2 and |S2| > 1, and let ĵ′1 ∈ argmaxj∈S̃1\{ĵ1}v1(j)

v1(X1) = v1(T1 ∪ {j̃1} \ {j̃2})
= v1(T1) + v1(j̃1)− v1(k2)

≥ v1(S̃1 ∪ {ĵ2} \ {ĵ1}) + v1(ĵ1)− v1(j̃2)

≥ v1(S̃1 \ {ĵ1}) + v1(ĵ1)− v1(j̃2)

= v1(S1 \ S′ \ {ĵ1}) + v1(ĵ1)− v1(j̃2)

≥ v1(S1 \ S′ \ {ĵ1}) + v1(ĵ1)− v1(ĵ
′
1)

= v1(S1 \ S′ \ {ĵ1, ĵ′1}) + v1(ĵ1),

where the first inequality is since, v1j̃1 = maxj∈T2
v1j ≥ v1ĵ1 . The second inequality is since

v1(ĵ2) ≥ 0, the third inequality is by ĵ′1 definition since j̃2 ∈ S̃1 \ ĵ1 by our assumption that k2 ̸= ĵ2.
Finally, we have have |S1 \ S′ \ {ĵ1, ĵ′1}| ≥ |S′| since

|S1| − 2− |S′| = |S1| − 2− (m/2− |S2|) = |S1| − 2− (m/2− (m− |S1|)) = m/2− 2 ≥ |S′|,

where the last inequality is since |S2| > 1. Since we handles the case |S2| = 1 earlier, we can
here assume |S2| > 1 in which case the set S′ is required to satisfy v1(S

′) ≤ v1(S1 \ {ĵ, ĵ′})/2.
Therefore, we have v1(S1 \ S′ \ {ĵ1, ĵ′1} ≥ v1(S

′).

(1− ϵ/4)µ1 ≤ v1(S1) = v1(S1 \ S′ \ {ĵ1, ĵ′1}) + v1(ĵ1) + v1(ĵ
′
1) + v1(S

′)

≤ v1(S1 \ S′ \ {ĵ1, ĵ′1}) + 2 · v1(ĵ1) + v1(S
′)

≤ 2 · v1(S1 \ S′ \ {ĵ1, ĵ′1}) + 2 · v1(ĵ1)
≤ 2 · v1(X1),

which implies that v1(X1) ≥ µ1

2+ϵ , finishing the proof.

H Mechanisms for n agents

In this section we provide a learning-augmented mechanism for n > 2 agents, Learning-
Augmented-MMS-for-n-Agents. The mechanism we devise ensures that if the predictions are
accurate, then each agent gets an allocation with value at least µn

i /2 (2 consistency). On the
other hand, we show that for any prediction, every agent gets at least µn̂

i /α for n̂ = ⌈3n/2⌉ and
α = max{m− n̂− 1, 1} (robustness).

Theorem H.1. The Learning-Augmented-MMS-for-n-Agents Mechanism (Mechanism 6) is
truthful, 2-consistent and (µn̂

i /α)-robust for n̂ = ⌈3n/2⌉ and α = max{m− n̂− 1, 1}.
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H.1 An Overview

The Mechanism. The mechanism works in three phases. In the first phase, it uses the predictions
in order to obtain a partial allocation to agents with high predicted items (which are then removed
from the set of active agents, so that we can now that for all agents, all predicted values are small).
Then, in the second stage, the mechanism uses the predictions in order to obtain a tentative allocation,
by running a Round-Robin procedure, where items are tentatively allocated to agents according to
their predictions. In the third and final phase, the tentative allocation is used to implement a recursive
plant and steal procedure, where the “planting” is done from the tentative allocations according to
predictions, but the “stealing” is done according to the agents’ reports and results in a final allocation.

MECHANISM 6: Learning-Augmented-MMS-for-n-Agents
Input :Set of agents N , set of items M , reports rN , predictions pN

Output : A partition of the items
⋃
· i∈N Xi

Invoke Algorithm 7, X ← Allocate-Large(N,M, rN ,pN )
Invoke Algorithm 9, A←Tentative-Allocation-Round-Robin(N,M,pN )
Invoke Algorithm 10, X ←Split-Plant-Steal-Recurse(N,A,first-level-flag = True, X, rN ,pN )

Figure 3: Illustration of a single round of the recursive planting and stealing phase (Algorithm 10),
for the case where predictions are accurate (so that each agent steals back their planted item). Note
that the stealing is done from the union of items of agents in the opposite set (and not just from the
corresponding agent).

Consistency. In the case the predictions are accurate, the initial allocation phase will take care of
agents with high valued items (of value larger than µn

i /2). Then, in the second phase, the tentative
allocation will be exactly identical to a Round-Robin allocation (made according to true valuations).
Finally, in the third phase, since agents steal in the same order they were allocated the items in the
Round-Robin allocation, and since the predictions are accurate, the agents “steal” back the same item
the mechanism plants. Since a Round-Robin allocation achieves µn

i /2 when there are no agents with
high valued items [8], correctness follows.
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Robustness. In the case the predictions are inaccurate, we show that every agent still gets at least
µn̂
i /α. Here we rely on the plant-and-steal phase to ensure that each agent gets at least their ⌈3n/2⌉

highest-valued item according to their true valuation. This property provides our robustness guarantee.
We notice that reversing the order between the first and subsequent rounds of the Round-Robin
procedure (and thus, the stealing phases) gives an enhanced robustness guarantee.

Prediction. In the description of the mechanism, we assume the mechanism is given a prediction
of agents valuations. We note that in order to implement the mechanism it is enough to be given
access to agents’ preference order over items, and an additional information indicating which items
are worth more than µn

i /2 for each agent i.

Due to space constraints the proof of Theorem H.1 is deferred to Appendix H.3, and we now provide
a detailed description of the different phases.

H.2 Implementation Details

As discussed, in order to utilize the Round-Robin mechanism, we first allocate a single item to each
agent with a high predicted value.

ALGORITHM 7: Allocate-Large
Input :Set of agents N , set of items M , reports rN , predictions pN

Output :A partial allocation
⋃
· i∈B Xi, updated sets of agents and items N,M , respectively

foreach i ∈ N do
Compute µn

i based on pi
while exists i ∈ N such that p∗i (M) ≥ µn

i /2 do
Xi ← {r1i (M)}
M ←M \Xi

N ← N \ {i}

Before describing the tentative allocation mechanism, we first give a procedure, Allocate-Best,
which performs a single round of Round-Robin according to a specific order, and preferences (either
predictions or reports), denote o.

PROCEDURE 8: Allocate-Best (One-Round-RR)
Input : Ordered set of agents N , set of items M , valuation vN

Output :|N | singletons Xi ∈M
foreach i ∈ N do

Xi ← v∗i (M)
M ←M \Xi

The tentative allocation mechanism repeatedly invokes Allocate-Best according to given pre-
dictions, until all items are tentatively allocated. As previously mentioned, the first round of the
tentative allocation is performed according to the given order, and in all subsequent rounds, the order
is reversed (recall that reversing the order enhances the robustness guarantees).

ALGORITHM 9: Tentative-Allocation-Round-Robin
Input :Ordered set of agents N = (i1, . . . , i|N|), set of items M , predictions pN

Output : A tentative allocation
⋃
· i∈N Ai = M

A← Allocate-Best(N,M,pN )
M ←M \ ∪i∈NAi

/* Reverse the order for the allocation of the rest of the items */
Nr = (i|N|, . . . , i1)
for k = 2, . . . , ⌈m/n⌉ do

Ã = Allocate-Best(Nr,M,pNr )

Ai ← Ai ∪ Ãi for i ∈ N

M ←M \ ∪i∈N Ãi
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The final phase in the mechanism is a recursive plant and steal algorithm. The input to this algorithm
is an ordered set of agents N , along with their predictions, reports, and a tentative allocation for each
agent. At each recursive invocation, the algorithm splits the set of agents into two (almost) equal-size
ordered sets N0 and N1. Then the mechanism “plants” for the ith agent in each set Nb their highest
(according to predictions) valued item in their tentative allocation in the tentative set of the ith agent
in N¬b. Then we perform one round of Round-Robin, where the items available to the agents of set
Nb are those tentatively allocated to the agents of N¬b (after the planting phase), and the allocations
are determined according to agents reports. See Figure 3 for an illustration of a single round of plant
and steal. The algorithm then recurses on each of the sets N0 and N1, until all sets are of size 1. At
this point, the single agent in the set is further allocated its remaining tentatively allocated items, and
the process terminates.

ALGORITHM 10: Split-Plant-Steal-Recurse
Input :Ordered set of agents N = (i1, . . . , i|N|), tentative allocations A, partial allocations XN ,

first-level-flag indicating if this is the first level of the recursion, reports rN , predictions pN

/* Halting condition - Allocate all remaining items */
if N = {i} then set Xi = Xi ∪Ai and halt

/* Split the agents into two almost-equal parts */
par = |N | mod 2
N0 ← (i1, i3, . . . , i|N|−1+par)
N1 ← (i2, i4, . . . , i|N|−par)

/* Plant according to predictions */
for i = 1,. . . , ⌊|N |/2⌋ do

Let i0, i1 denote the ith agent in N0, N1 respectively.
j∗0 = p∗i0(Ai0)
j∗1 = p∗i1(Ai1)
Ai0 = Ai0 + j∗1 − j∗0
Ai1 = Ai1 + j∗0 − j∗1

/* Plant in’s favorite item in a tentative set */
if par = 1 then

i0 = in,i1 = i2
j∗0 = p∗i0(Ai0)
Ai1 = Ai1 + j∗0 , Ai0 = Ai0 − j∗0

/* Steal from the opposite set according to reports */
foreach b ∈ {0, 1} do

X̂=Allocate-Best(Nb, AN¬b , r)
foreach i ∈ N do

Xi ← Xi ∪ X̂i

/* Reverse the order after the first level of recursion */
if first-level-flag then

N0 ← (i|N|−1+par, . . . , i3, i1)
N1 ← (i|N|−par, . . . i4, i2)

/* Recursively invoke Split-Plant-Steal-Recurse on each set */
foreach b ∈ {0, 1} do

Split-Plant-Steal-Recurse(Nb, ANb , XNb ,first-level-flag = False)

Given the above implementation details, it remains to prove Theorem H.1 regarding truthfulness,
consistency and robustness of the mechanism. The proof is given in Appendix H.3.

H.3 Missing Details from Section H

In this section we prove Theorem H.1, which we now recall.

Theorem H.1. The Learning-Augmented-MMS-for-n-Agents Mechanism (Mechanism 6) is
truthful, 2-consistent and (µn̂

i /α)-robust for n̂ = ⌈3n/2⌉ and α = max{m− n̂− 1, 1}.

First, we give a simple observation regarding Algorithm 7.
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Observation H.1. The followings hold for Algorithm Allocate-Large.

1. If the reports equal the true valuations, and agent i is allocated an item j, then vi(j) ≥ vni /2.

2. After the algorithm completes its run, there are no remaining agents in N with large
predicted values for the remaining items in M .

We continue to prove each of the properties specified in Theorem H.1 separately, starting with
truthfulness.

Lemma H.1 (Truthfulness). Mechanism Learning-Augmented-MMS-for-n-agents (Mechanism
6) is truthful.

Proof. Algorithm Tentative-Allocation-Round-Robin (Algorithm 9) only depends on agents
predictions and not their reports. Hence, we only need to consider the use of the reports in Algo-
rithms 9 and 10.

For every agent i, either they are allocated a single item in Algorithms 9, or i participates in the
recursive plant ant steal, and this is determined according to the predictions, so in particular ri has no
affect on this. Thus, we can consider the two independent events separately. In the first case, where i
is allocated a single item, it is the item that maximizes their report over remaining items at that point,
so that i has no incentive to lie.

In the second case, i participates in the plant and steal phase. Observe that in this case, whenever
i chooses an item from some set A′, it will have no future interaction with this set. That is, fix a
recursive call and assume without loss of generality that i ∈ N0. Then after the planting step, i is
allocated the item in AN1

that maximizes their reports. Then, in following recursive steps, i only
continues to interact with items in AN0

, so i’s choice does not affect the identity of the items from
which i will be able to choose from in future rounds. Hence, i’s only incentive is to maximize the
value of its allocated value in each round, implying truthfulness.

Due to the above lemma, from now on we assume agents report truthfully, i.e., that for every agent i,
ri = vi. We turn to show the mechanism is consistent, we rely on the following theorem.

Theorem H.2 (Lemma 2 in [10] (based on Theorem 3.5 in [8])). If for every i ∈ N and j ∈ M ,
vi(j) ≤ 1

2µ
n
i , then the Round-Robin algorithm returns an allocation that is a 2-approximation to the

MMS.

Furthermore, their analysis holds when changing the order of allocation between the different rounds
of the Round-Robin.

We are now ready to prove the mechanism is consistent.

Lemma H.2 (Consistency). If the set of predictions is accurate, then for every i, vi(Xi) ≥ µn
i /2.

Proof. First consider agents that were allocated an item in Algorithm Allocate-Large (Algo-
rithm 7). If the predictions are accurate, then each such agent i is allocated an item j such that
vi(j) ≥ µn

i /2 and so the statement holds. Moreover, at the end of this step, there are no remaining
agents with large predicted values, hence, no agents with large values remain.

If the set of predictions is accurate, then the tentative allocation determined according to agents’
predictions in Algorithm Tentative-Allocation-Round-Robin ( Algorithm 9) is identical to a
Round-Robin mechanism according to valuations, with reversing the order between the first and
all subsequent rounds. Furthermore, by the above, there are no agents with large values when the
Round-Robin is invoked. Therefore, by Theorem H.2, it holds that for every i, vi(Ai) ≥ µn

i /2.
We shall prove that for every agent i, its final allocation equals its tentative allocation, Xi = Ai,
concluding the proof.

We prove that in depth k of the recursion, every agent i is allocated the kth item in Ai. We prove the
claim by induction on the depth k of the recursion, and the ℓth agent in that round that is allocated
some value.

We first prove for k = 1, ℓ = 1. In the plant phase, ℓ0(= 1) plants j = p∗ℓ0(Aℓ0) in Aℓ1 . Then, in the
stealing phase, during the invocation of Algorithm 8, agent ℓ0 is the first to choose an item from AN1

,
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which in particular contains j. Hence, the first item in A1 is allocated into X1. We now assume the
claim holds for k = 1 and ℓ− 1 and prove it for ℓ. Assume without loss of generality that ℓ is odd so
that iℓ ∈ N0.

In step ℓ of the planting phase, the mechanism plants ℓ0’s (the proof for ℓ1 is identical) first (according
to value pℓ0) item in Aℓ0 . Then, during the tentative allocation phase, agent ℓ0 is the ℓth to choose
among the items in AN1 minus the items that were allocated to the ℓ − 1 agents that were before
her in the tentative Round-Robin. By the induction hypothesis, every agent preceding her chose
the item the mechanism planted for them previously in that round. Therefore, the item j that the
mechanism planted for agent ℓ0 is still available. Moreover, let M ℓ−1 denote the set of items after
ℓ− 1 rounds of the tentative Round-Robin in Algorithm 9. Further let Aℓ−1

N1
denote the set of items

after ℓ− 1 rounds of the Allocate-Best algorithm invoked in the stealing phase with the set N0,
i.e., Aℓ−1

N1
= AN1 \

⋃
j∈N0,j<ℓ{Xj}. Since the order in which the agents plant and steal in each

round of the recursion is equivalent to the order in which the corresponding tentative allocation round
was performed, it holds that Aℓ−1

N1
⊂ M ℓ−1. Since j = p∗ℓ0(M

ℓ−1), and pℓ0 = rℓ0 , it holds that
r∗ℓ0(A

ℓ−1
N1

) equals j. Therefore ℓ0 will choose j to Xℓ0 as claimed.

Proving the claim for a general k is almost identical. At the planting phase of the kth round, the
mechanism plants for every agent ℓ0 ∈ Nk

0 their kth item of Ai in ANk
1

and vice versa. A similar
argument to the one above, shows that this item will remain available until its their turn to choose an
item for allocation, as by the recursion hypothesis, all agents preceding i in the Round-Robin will
select the items the mechanism planted for them. Hence, the kth item in Aℓ0 will be allocated to Xℓ0 .

Finally, once the set agent i belongs to becomes a singleton, by our halting condition, Xi ← Xi ∪Ai,
so together with the previous argument, we get that for every ℓ, Xi = Ai as needed.

We continue to prove that the mechanism is robust. Since when m < n̂, µn̂
i = 0 for every agent i,

and each agent trivially gets their MMS value, we assume from now on that m ≥ n̂ and show the
mechanism achieves (m − n̂ − 1)-robustness for µn̂

i . We first prove in Lemma H.3 that for each
agent i, vi(Xi) ≥ v

⌈3n/2⌉
i , and then prove in Lemma H.5 that the value of this item is not too small

compared to µ
⌈3n/2⌉
i .

Lemma H.3. For every agent i, vi(Xi) ≥ v
⌈3n/2⌉
i .

Proof. We first prove the claim for agents that were allocated a value during the invocation of
Algorithm 7. By the definition of the algorithm and its truthfulness when agent i is allocated an item,
at most n− 1 items were previously allocated to other agents. Hence, she can always choose her nth

highest valued item. Therefore, we have vi(Xi) ≥ vni ≥ v
⌈3n/2⌉
i , as claimed.

We continue to prove the claim for the set of agents with no large predicted values. Consider the
ℓth agent in N , iℓ, and consider the following coloring process. Initially, color all items in M black.
We will then color all items iℓ was able to choose from green, and items allocated before she had
the chance to choose from gray (note that these colors are unrelated to the ones in the figure). Note
that an item turns green when it belongs to the tentative allocation of opposite set to iℓ’s and has not
been taken by agents preceding her in the allocation order. We claim that by the time no black items
remain, at most ⌈3n/2⌉ − 1 have turned gray, implying that at some point during the recursion, iℓ
could have chosen their ⌈ 3n2 ⌉

th highest valued item (according to riℓ ).

We let Nk denote the set of agents to which iℓ belongs to at depth k of the recursion, starting with
N1 = N . At each recursive call, Nk is partitioned into Nk

0 , N
k
1 . We further let bk ∈ {0, 1} denote

the index of the set to which iℓ belongs to: iℓ ∈ Nk
bk . We will separately bound the number of items

turned gray due to agents in Nk
bk

and Nk
¬bk

.

In the first iteration, for k = 1, let A1
N1

b0
, A1

N1
¬b0

denote the tentative sets allocated to the agents of

N1
0 and N1

1 after the planting phase (i.e., at the beginning of the stealing phase).

The number of items that turn gray due to agents in N1
b1 is G1

b1 = ⌈ℓ/2⌉− 1, since iℓ has access to all
items in A1

N¬b1
excluding the ⌈ℓ/2⌉ − 1 items that were allocated to the agents in her set preceding

her in the ordering. (The rest of the items in A1
N¬b1

turn green.)
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Turning to G1
¬b1 , each agent in the opposite set to hers, N1

¬b1 , is allocated a single item (from A1
N1

b1
)

before continuing to the next round of the recursion. Therefore, G1
¬b1 = |N1

¬b1 | (and no item turns
green).

The recursion then continues with N2 = N1
b1 and in reversed order (due to the order being reversed).

Therefore, at the beginning of the second iteration, iℓ is in location |N1
b1 | − ⌈ℓ/2⌉ in N2. After the

partition phase, iℓ is in set N2
b2 and in location ⌈ |N

1
b1

|−⌈ ℓ
2 ⌉

2 ⌉. Hence, G1
b1 = ⌈ |N

1
b1

|−⌈ ℓ
2 ⌉

2 ⌉ − 1 due to
agents in her set preceding here in the ordering. Also, G1

¬b1 = |N1
¬b1 | due to allocations to agents in

the opposite set to hers.

From now on, the order is preserved, so for every k ≥ 3, Gk
bk = |Nk

bk | and Gk
¬bk = ⌈ |N

1
b1

|−⌈ℓ/2⌉
2k−1 ⌉−1.

We continue by bounding
∑⌈logn⌉

k=1 Gk
¬bk =

∑⌈logn⌉
k=1 |Nk

¬bk |. Observe that if Nk is even then
Nk

bk = Nk
¬bk = Nk/2, and if Nk is odd, then either Nk

bk is odd and Nk
¬bk is even or vice versa. In the

first case, Gk
¬bk = ⌈Nk/2⌉ and we recurse with Nk

bk which is of size ⌊NK/2⌋. In the second case,
Gk

¬bk = ⌊NK/2⌋ and we recurse with Nk
bk of size ⌈Nk/2⌉. Hence, we have the following recursion

formula. For even ℓ, T (ℓ) = ℓ/2 + T (ℓ/2), and for odd ℓ, either (a) T (ℓ) = ⌈ℓ/2⌉ + T (⌊ℓ/2⌋) or
(b) T (ℓ) = ⌊ℓ/2⌋+ T (⌈ℓ/2⌉). In Claim H.4 below, we prove that for such a function, if it also holds
that T (1) = 0 and T (2) = 1, then T (ℓ) ≤ ℓ− 1. Therefore, we get that

∑⌈logn⌉
k=1 Gk

¬bk ≤ n− 1.

We continue to bound
∑⌈logn⌉

k=2 Gk
¬bk =

∑⌈logn⌉
k=2 ⌈ |N

1
b1

|−⌈ℓ/2⌉
2k−1 ⌉ − 1. The sum

∑⌈logX⌉
k=1 ⌈X

2k
⌉ can be

bounded by
(∑⌈logX⌉

k=1
X
2k

)
+ L, where L is the number of indices k for which the fraction X/2k is

rounded up. Observe that for every X , L can be bounded above by ⌈logX⌉ as L exactly equals the
number of 1 bits in the binary representation of X . Hence, the overall number of items that turn gray
can be bounded as follows:

G⌈logn⌉ =

⌈logn⌉∑
k=1

(
Gk

¬bk +Gk
bk

)
≤ n− 1 + ⌈ℓ/2⌉ − 1 +

⌈logn⌉∑
k=2

(⌈
⌈n/2⌉ − ⌈ℓ/2⌉

2k−1

⌉
− 1

)
≤ n− 1 + ⌈ℓ/2⌉ − 1 + ⌈n/2⌉ − ⌈ℓ/2⌉+ ⌈log n⌉ − ⌈log n⌉+ 1

≤ ⌈3n/2⌉ − 1.

Therefore, the number of items that turn gray by the end of the recursion is at most ⌈3n/2⌉ − 1, and
so iℓ get their ⌈3n/2⌉ highest valued item v

⌈3n/2⌉
iℓ

.

We now prove the claim regarding the cost of the recursion that was used in the previous lemma.

Lemma H.4. Let T (n) be such that T (n) = n/2 + T (n/2) if n is even and either (a) T (n) =
⌈n/2⌉+ T (⌊n/2⌋) or (b) T (n) = ⌊n/2⌋+ T (⌈n/2⌉) for odd n. Also assume T (1) = 0, T (2) = 1.
Then T (n) ≤ n− 1.

Proof. We prove the claim by induction on n. By T (1) = 0 and T (2) = 1 so the induction basis
holds. We now assume correctness for all values smaller than n and prove for n.

If n is even then T (n) = n/2 + T (n/2) ≤ n/2 + n/2− 1 = n− 1, so the claim holds.

If n is odd, then in case (a), T (n) = ⌈n/2⌉+ T (⌊n/2⌋) ≤ ⌈n/2⌉+ ⌊n/2⌋ − 1 = n− 1, and in case
(b), T (n) = ⌊n/2⌋+ T (⌈n/2⌉)− 1 ≤ ⌊n/2⌋+ ⌈n/2⌉ − 1 = n− 1.

Finally, we prove that the highest valued item allocated to each agent i is not too small compared to
their MMS.

Lemma H.5. Consider an MMS for agent i, and let j∗ be the highest valued item of i in her allocation.
Then

vi(j
∗) ≥ µ

⌈3n/2⌉
i /α for α = m− ⌈3n/2⌉ − 1.
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Proof. Consider an MMS allocation of M for k = ⌈3n/2⌉, and let Ai be the set such that vi(Ai) =
µk
i . By the assumption on j∗, its value is higher then the highest valued item in Ai, vi(j∗) ≥

v1i (Ai). Therefore, vi(Ai) ≤ |Ai| · vi(j∗), implying vi(j
∗) ≥ vi(Ai)/|Ai| = µk

i /|Ai|. Since
|Ai| ≤ m− k − 1 (as at least k − 1 items must be allocated to the k − 1 additional agents, it holds
that vi(j∗) ≥ µ

3n/2
i /(m− ⌈3n/2⌉ − 1).

Proof of Theorem H.1. The theorem follows by Lemmas H.1, H.2, H.3, and H.5.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract is a high-level description of the results of the paper. The intro
introduces a more detailed dive into the results, with a “our results and techniques" section,
where we try to give a detailed overview of our technical contributions. Moreover, Table 1
is given to provide an easy-to-understand summary of our theoretical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [No]

Justification: This is mainly a theoretical paper, and all the assumptions are clearly stated.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper contains a detailed preliminary section where the model is fully
described. The theorems and complete, and the ones not appearing in the body appear in the
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: Using the code provided, it is possible to reproduce the main experimental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code can be accessed via the link:
https://tinyurl.com/PlantStealExperiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe how the data is generated and provide the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper experiments with Bernoulli variables (indicating either success or
failure) with non-negligible p values, which are known to be very highly concentrated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: The experiments were done on a standard PC (Intel i9, 32GB memory), and it
took approximately 30 minutes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper studies a mechanism design problem with the objective of outputting
a fair allocation, which is a highly desirable goal. We study a generalization of the widely
studied proportionality objective for discrete settings. We note that this objective is well
motivated in settings like course-allocation [18], but might be inappropriate in other settings.
The techniques in this paper should be used with appropriate care. Moreover, over paper
suggests that using past data might increase fairness, but every usage of data should be taken
with extra precautions, as these might introduce implicit biases, as shown in the past.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Introducing a learning-augmented framework is shown to obtain stronger
theoretical fairness guarantees than other mechanisms studied in the literature. Elements in
the design might improve the performance of fair allocation mechanisms in settings such as
course allocation, which is of course a positive societal impact. On the other hand, using
past data can also result in introducing biases to the allocation, thus, using data should be
done with awareness to such potential biases.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No third-party packages are used, and the data used for experiments is syn-
thetic.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
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Justification: Experimental details are described and documented code is provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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