
Packing Small Vectors

Yossi Azar ∗ Ilan Reuven Cohen∗ Amos Fiat∗ Alan Roytman∗

Abstract

Online d-dimensional vector packing models many settings such as minimizing resources in
data centers where jobs have multiple resource requirements (CPU, Memory, etc.). However,
no online d-dimensional vector packing algorithm can achieve a competitive ratio better than d.
Fortunately, in many natural applications, vectors are relatively small, and thus the lower bound
does not hold. For sufficiently small vectors, an O(log d)-competitive algorithm was known. We
improve this to a constant competitive ratio, arbitrarily close to e ≈ 2.718, given that vectors
are sufficiently small.

We give improved results for the two dimensional case. For arbitrarily small vectors, the first
fit algorithm for two dimensional vector packing is no better than 2-competitive. We present a
natural family of first fit variants, and for optimized parameters get a competitive ratio ≈ 1.48
for sufficiently small vectors.

We improve upon the 1.48 competitive ratio – not via a first fit variant – and give a com-
petitive ratio arbitrarily close to 4/3 for packing small, two dimensional vectors. We show that
no algorithm can achieve better than a 4/3 competitive ratio for two dimensional vectors, even
if one allows the algorithm to split vectors among arbitrarily many bins.

∗School of Computer Science, Tel-Aviv University. E-mails: azar@tau.ac.il, ilanrcohen@gmail.com,
fiat@tau.ac.il, alan.roytman@cs.tau.ac.il.

1 Introduction

As cloud computing and the use of large server farms have become more prevalent, the costs of
providing power and cooling servers have skyrocketed, so much so that these costs now surpass the
costs of hardware and servers [15]. Every year, billions of dollars are spent on data centers due to
the costs of energy consumption alone [2]. Indeed, server utilization in data centers is surprisingly
low, and is estimated to be between 5% and 15% on average [5]. Such underutilized servers result
in energy waste and monetary cost. Even small improvements in power efficiency can result in
substantial gains monetary gains and have a positive impact on the environment.

The work of [16] studied the impact of resource contention among jobs by measuring energy
consumption on individual hardware components. They concluded that jobs which do not contend
for the same set of resources can be parallelized well and consume significantly less power when
compared to jobs which make heavy use of the same resource. These results substantiate the idea
that, when assigning jobs to machines, it is important to represent jobs as vectors to capture the
fact that resource requirements are multidimensional (e.g., CPU, memory, and I/O). Modeling jobs
in this manner is important to understand how to design algorithms that minimize the number
of active servers in a scenario where jobs make heavy use of many hardware components. For
instance, assigning multidimensional jobs to machines has applications in implementing databases
for shared-nothing environments [11], along with optimizing parallel queries in databases as such
tasks typically involve resources such as the CPU or disk [10]. Indeed, jobs are increasingly becoming
more parallel, and hence leave a large footprint on many CPU cores.

The guarantees on performance are quite pessimistic for the general vector packing problem,
but this may not accurately model what happens in practice. In fact, the requirements of any single
job are typically small across all dimensions (relative to the total machine capacity). In this paper
we study this scenario and exploit the restriction that inputs consist only of small vectors.

Motivated by these reasons, we study the classic Bin Packing problem in an online, multidi-
mensional setting, and call this problem the Vector Bin Packing problem. In the offline version
of the problem, we are given a set of vectors {v1, . . . , vn} where vi = (vi1, . . . , vik) ∈ [0, 1]d for all
i ∈ [n], where [n] = {1, . . . , n}, and we must find a partition of the set of vectors into feasible
sets B1, . . . , Bm such that, for each 1 ≤ j ≤ m and each coordinate k, we have

∑
i∈Bj vik ≤ 1.

We refer to each set Bj as a bin, each of which has capacity 1 for each coordinate 1 ≤ k ≤ d.
The objective function is to minimize m, the number of bins used to feasibly pack all vectors. In
the online version of the problem, d-dimensional vectors arrive in an online manner and must be
immediately assigned to an open bin, or to a new bin, so that the capacity constraints on each bin
are satisfied along each dimension. We focus on the setting where all vectors have small values in
each coordinate (e.g., at most ε) relative to the size of a bin. We sometimes refer to vik as the load
of vector vi on dimension k.

The benchmark we use to measure the performance of an online algorithm is the competitive
ratio. In particular, we compare how many bins an online algorithm alg opens relative an optimal
solution opt that is omniscient and knows which vectors will arrive in the future. More formally,
for any input sequence x, let alg(x) denote the number of bins used by the online algorithm and
opt(x) denote the number of bins used by an optimal solution that knows the entire sequence of
vectors in advance. We say that alg is c-competitive if alg(x) ≤ c · opt(x) + a for any input
sequence x (where we allow some additive constant a).

The online Vector Bin Packing problem is trivial in one dimension (d = 1) for small items. In
particular, if all (single dimensional) values are at most ε then any algorithm that avoids opening
a new bin unless necessary (e.g., First Fit, Best Fit, Any Fit) is (1 + O(ε))-competitive. When
applying such algorithms in higher dimensions, (d ≥ 2), and even if one only considers input
sequences of arbitrarily small d-dimensional vectors, the competitive ratio is at least d.

1

Contributions and Techniques

Azar et al. [1] showed that the competitive ratio for the Vector Bin Packing problem in d dimensions
must depend on d, if input sequences consist of arbitrary vectors. However, prior to the algorithms
presented herein, and even if one only considers input sequences of arbitrarily small vectors, the
best competitive ratio was at least log d [1]. As our main contribution for arbitrary d, we close this
gap and give an O(1)-competitive algorithm. Our contributions in this paper are as follows:

1. We give a randomized algorithm in Section 3.1 that is e-competitive in expectation for Vector
Bin Packing, where d is arbitrarily large and input vectors are sufficiently small. More

precisely, for any ε > 0, if all vectors are smaller than O
(

ε2

log d

)
, then the expected competitive

ratio is at most (1+ ε)e. We then derandomize this algorithm in Section 3.2 and get the same
guarantees in the deterministic setting as the randomized setting, except that vectors must
be smaller by an additional factor of log 1

ε .

2. For two dimensional vectors we give improved results:

(a) In Section 2.1, we describe a family of restricted first fit algorithms for vector bin packing
when vectors are sufficiently small. We show that optimizing over this family gives an
algorithm with a competitive ratio of ≈ 1.48 +O(ε) if all vectors have values at most ε.

(b) In Section 13, we give an optimal algorithm for two dimensional vector packing, when
vectors are small. That is, for any ε > 0, if all vectors are smaller than ε2, then the
(deterministic) competitive ratio is 4

3 +O(ε).

(c) In Section 2.3, we show that the 4
3 + O(ε) algorithm is almost tight, by giving a lower

bound of 4
3 on the competitive ratio of Vector Bin Packing, even when vectors are

arbitrarily small.

To obtain our results, we consider an intermediate problem: splittable vector bin packing. In the
splittable vector setting vectors can be split into arbitrarily many fractions, v ·α1, v ·α2, . . . , v ·αk,∑

i αi = 1, where every fraction v · αi can be packed in a different bin. In the splittable model,
the assumption that vectors are small is irrelevant as any big vector can be split into many small
fractions. We remark that the lower bound of 4/3 holds even in the splittable vector setting. We
then give a reduction from the problem of small and unsplittable vector bin packing, to the problem
of splittable vector bin packing, while losing little in the competitive ratio (as a function of the
upper bound on the vector values). We note that we use significantly different rounding techniques
for each of our contributions when going from the splittable setting to the unsplittable setting.

We begin with our techniques for d = 2 dimensions regarding our restricted first fit algorithms
for splittable vectors. The main idea here is that we restrict certain bin configurations that cause
a large imbalance between the loads on both bin dimensions. Each time we reject a vector from a
bin, this puts restrictions on vectors that can be assigned to future bins. To handle the case when
vectors are small and unsplittable, we note that the load on some bins may not lie on the curve
defined by our function f . However, we argue that we can map the load on each such bin to a
corresponding load on the curve that approximately preserves our restriction property.

For our (43 +O(ε))-competitive algorithm, we note that in the splittable setting, our algorithm is
actually 4

3 -competitive. We obtain our result for the splittable setting by partioning bins into virtual
bins of two types. We carefully design the algorithm to ensure that the total load among all bins of
the first type is equal on both coordinates. We maintain the invariant that these bins, in aggregate,
are sufficiently packed. For the second type of bins, we leave enough space to accommodate future
vectors in order to guarantee that our invariant continues to hold. All together, this yields a tight

2

bound. To obtain our 4
3 +O(ε) result for the unsplittable setting when vectors are small, we assign

vectors to buckets according to the ratio between their loads. Within each bucket, we can closely
mimic the behavior of the algorithm in the splittable setting.

For our main contribution for arbitrary d, namely the e(1 + ε)-competitive algorithm, we note
that in the splittable setting, our algorithm is e-competitive. This result is obtained by defining
a probability density function that fully allocates vectors among continuous bins in a way that is
essentially oblivious to the incoming vector. We maintain an accurate estimate of opt and open
at most e · opt bins. To obtain our randomized and deterministic e(1 + ε)-competitive results
for the unsplittable setting, our algorithm is inspired by [12]. However, we must overcome several
obstacles. In particular, our arguments must be extended to the cases when vectors are small, the
number of bins can change dynamically over time, and the probabilities are not uniform.

Related Work

There is a large body of work for the Vector Bin Packing problem, since it has practical applications
to cloud computing, along with the rise of virtual machine consolidation and migration [14]. The
most closely related paper to ours is the work of Azar et al. [1]. They showed a lower bound of

Ω
(
d

1
B
−ε
)

for any ε > 0, and gave an online algorithm that is O
(
d

1
B−1 (log d)

B
B−1

)
-competitive for

any integer B ≥ 2 (where B is the ratio between the largest coordinate and the size of each bin).
For B = O(log d), we close their gap by designing an O(1)-competitive algorithm for arbitrary d,
and provide an essentially tight algorithm for d = 2.

In general, the single dimensional case of Vector Bin Packing (i.e., the classic Bin Packing
problem) has a vast body of work. We only mention some of the more closely related papers to our
models and results. For a broader overview of the literature, there are surveys available concerning
the offline and online versions of the Bin Packing problem, along with some multidimensional results
and other models [4, 8].

The work of [3] gave an algorithm that, for any ε > 0, achieved an approximation ratio of
O
(
1 + εd+ ln

(
1
ε

))
in polynomial time for the offline setting when d is arbitrary. They also showed

that, unless NP = ZPP, it is impossible to obtain a polynomial-time approximation algorithm for

Vector Bin Packing with an approximation ratio of d
1
2
−ε for any ε > 0 (this was strengthened to

d1−ε in [1]). For the online setting, a (d+ .7)-competitive algorithm was given in [9].
There is also a line of research in the online setting that considers variable sized bins, which

was first studied by [7] and more recently by [17]. In this problem, a set of bin capacity profiles B
is given, each element of which is a vector in Rd. The multidimensional version of this problem was
introduced in [6], where it was shown that, for any ε > 0, there is a set of profiles such that the
competitive ratio is 1 + ε. Moreover, they provided a negative result by arguing that there exists
a set of bin profiles such that any randomized algorithm must have a competitive ratio of Ω(d).

A closely related problem to the online Vector Bin Packing problem is the online Vector Schedul-
ing problem with identical machines. In this setting, we have a hard constraint on the number of
bins (i.e., machines) that are open, and we must minimize the makespan (i.e., the largest load over
all machines and all dimensions). The multidimensional version of this problem was studied in the
offline setting by [3], in which an O(log2(d))-approximation algorithm was given. For the online
setting, this result was later improved by [1] and [13], where O(log d)-competitive algorithms were

given for the problem. More recently, an optimal algorithm with a competitive ratio of O
(

log d
log log d

)
along with a matching lower bound were given in [12].

3

Type 𝐴 bin, index 1

𝛼

Type 𝐵 bin, index 2

𝛽

≥ 𝛼

≥ 𝛼

Type 𝐵 bin, index 4

≥ max{𝛾, 𝛼}

Type 𝐴 bin, index 3

𝛾

≤ 𝛽

≤ 𝛽

≥ max{𝛾, 𝛼}

Figure 1: A snapshot during the execution of some f -restricted First Fit Algorithm. Note that subsequent
to a Type A bin, where the vectors “touch” the forbidden curve above, the angle with the x-axis of the line
tangent at this point (α at index 1, γ at index 3) is a lower bound on the angle of any vector (fragment)
placed in a subsequent Type B bin. A similar claim holds for Type A bins subsequent to Type B bins.

2 Two Dimensional Vector Bin Packing

We first present our f -restricted First Fit Algorithm, which achieves a competitive ratio of ≈ 1.48
when vectors are splittable. If all vectors have values smaller than ε and are unsplittable, this
incurs an additional factor of 1 +O(ε) in the competitive ratio.

2.1 The f-restricted First Fit Algorithm

Splittable Vectors

Let f : [0, 1] → [0, 1] be a monotone non-decreasing concave function with f(0) = c and f(1) = 1.
We first define a class of f -restricted First Fit Algorithms when vectors are splittable (i.e., when
vectors v can be split into arbitrarily many fractions α1v, α2v, . . ., αkv, where αi ≥ 0,

∑
i αi = 1).

The f -restricted First Fit Algorithm is a variant of the first fit algorithm with the following
twist:

• For an incoming vector v, add as large a fraction of v to the next bin in sequence such that
the resulting load on the bin ` = (`x, `y) has `y ≤ f(`x) and `x ≤ f(`y).

• Continue assigning fractions of v to bins as above until the sum of fractions is equal to the
original vector.

One can interpret the algorithm as a first fit algorithm for splittable vectors where every bin
has “forbidden regions,”: an “upper curve limit” [t, f(t)] and a “right curve limit” [f(t), t], for
0 ≤ t ≤ 1. See Figure 1.

Observation 1. At any point of the algorithm’s run the load on every bin is either on the upper
curve or the right curve, except at most one bin (the last active bin).

Accordingly, we define a bin that has a load which lies on its upper curve to be of Type A, and
similarly define a bin that has a load which lies on its right curve to be of Type B. Given a pair of
points a = (ax, f(ax)) and b = (f(by), by), we define T (a, b) to be the competitive ratio assuming
the load of all Type A bins is a and the load of all Type B bins is b. The following lemma is proved
in Appendix A.

Lemma 1. T (a, b) = max
{
ay−ax+bx−by
bxay−axby , 1

ay
, 1
bx

}
.

4

We define a partial order on two dimensional vectors, (vx, vy) ≤ (ṽx, ṽy) if and only if vx ≤ ṽx
and vy ≤ ṽy. Note that this partial order defines a total order for vectors along the upper curve,
and a total order for vectors on the right curve. This follows since f is monotone. By volume
consideration it is easy to verify that:

Observation 2. The function T (a, b) is monotone. That is, if a ≤ ã, then T (a, b) ≥ T (ã, b) for
all b. Similarly, if b ≤ b̃, then T (a, b) ≥ T (a, b̃) for all a.

For each point in x ∈ [0, 1], we define H(x) = (hx, hy) and HR(x) = (hy, hx) such that hy/hx =
f ′(x), hx = f(hy). The following lemma and theorem are proved in Appendix A.

Lemma 2. Let ã, b̃ be the smallest load among all Type A,B bin loads, respectively. Then, b̃ ≥
H(ax) or ã ≥ HR(by).

Theorem 3. Let f : [0, 1] 7→ [0, 1] be a monotone non-decreasing concave function. The competitive
ratio of the f -restricted First Fit Algorithm is maxx T ((x, f(x)), H(x)).

Unsplittable, Small Vectors

One can naturally define an f -restricted First Fit Algorithm in the context of unsplittable vectors.
That is, assign a vector to a bin only if adding the vector in its entirety does not violate the
restrictions. Now, we verify that this f -restricted First Fit Algorithm obtains almost the same
competitive ratio as in the splittable case, subject to the condition that vectors are sufficiently
small (i.e., vector coordinate values are at most ε). We prove the following in Appendix A, and
give an accompanying figure.

Lemma 4. Let f be a function such that our f -restricted First Fit Algorithm yields an α-competitive
ratio for the splittable vector setting. Then, the f -restricted First Fit Algorithm, when applied to
unsplittable vectors, achieves a competitive ratio of α(1+O(ε)) (assuming all coordinates have value
at most ε).

In Appendix B, we give the best competitive ratio attainable when f is a linear function,
and describe a family of f -restricted First Fit algorithms when vectors are sufficiently small. We
approximately optimize over this family, using piecewise linear functions. In particular, we prove
the following.

Theorem 5. Assume that all vectors are unsplittable and have value smaller than ε. If f is a linear
function, the best attainable competitive ratio for f -restricted First Fit algorithms is φ(1 + O(ε)),

where φ = 1+
√
5

2 is the golden ratio. If f can be piecewise linear, there is a function which achieves
a competitive ratio of ≈ 1.48(1 +O(ε)).

2.2 A 4
3
-competitive Algorithm

Splittable Vectors

We now give a 4
3 -competitive online algorithm for splittable vectors. We write our algorithm

assuming its competitive ratio is some value c > 1, and eventually argue that c = 4
3 is sufficient to

carry out our proof. Our algorithm works by maintaining virtual bins, each of which has equal x
and y dimensions, which can be some fraction ≤ 1, called the size of the virtual bin. An arriving
online vector may be split into multiple parts, each of which is assigned to some virtual bin. Each
real bin consists of some number of virtual bins. The sum of the sizes of the virtual bins assigned

5

to a real bin is exactly one, except for possibly the last real bin which may have some unallocated
space.

We distinguish two types of virtual bins, open and closed virtual bins. Over time, when new
vectors arrive, new virtual bins may be created. The new virtual bins may be placed in the
unallocated space of the last real bin, or a new real bin may be created to accommodate new
virtual bins. When created, a new virtual bin may be open or closed. The size of the new virtual
bin is determined when created and never changes. Subsequently, fractions of newly arriving vectors
may be assigned to open virtual bins (but not to closed virtual bins). An open virtual bin may
become a closed virtual bin.

Let V1 denote the total load from vectors along the first coordinate, and let V2 denote the total
load from vectors along the second coordinate. Throughout the algorithm, we assume without loss
of generality that V1 ≥ V2. In fact, we assume that V1 ≥ V2 even after the vector arrives: if this is
not the case we can represent the incoming vector v as the sum of two vectors, v = v′+v′′, v′ = αv,
v′′ = (1− α)v, 0 ≤ α ≤ 1. Dealing with v′ results in the volume on both coordinates being equal,
subsequently – we “rename” the coordinates, with the leading coordinate (now coordinate 2) being
renamed to be coordinate 1.

Each open virtual bin has zero load on its second coordinate, while the load on its first coordinate
occupies exactly a 1

c -fraction of the open virtual bin’s size. The main purpose for leaving free space
in open virtual bins is to accommodate future vectors.

1 while vector v = (x, y) arrives do
2 if x ≥ y then // See Figure 2 Case (a)

3 Allocate a virtual bin of size c(x− y) + y, and assign v into it
4 Mark the segment [0, y] of the bin as closed, and [y, c(x− y) + y] as open

5 else
6 Get an open virtual bin b of size c(y − x)
7 if y ≥ c

c−1x then // See Figure 2 Case (b)

8 Assign v to b
9 else // See Figure 2 Case (c)

10 Let f ← (c− 1)(yx − 1), and assign the vector f · v to bin b
11 Allocate a virtual bin a of size (1− f) · y
12 Assign the remaining vector (1− f) · v into bin a, mark it as closed

13 Mark bin b as closed

Algorithm 1: The 4/3 competitive algorithm for splittable, two dimensional vectors.

In lines 3 and 11 of Algorithm 1 one needs to allocate new virtual bins. In fact, such bins may
span more than one real bin. For ease of exposition, we assume that if a virtual bin is to span more
than one real bin, the incoming vector v is split into two smaller vectors αv and (1− α)v, so that
the allocated virtual bin fits into one real bin.

We now argue that in line 6 of Algorithm 1, a suitable virtual bin (of size c(y − x)) must be
available. In fact – as stated – this is simply false. However, we prove an equivalent claim that one
can split the incoming vector v into multiple parts, and split existing open virtual bins, so that all
fractional parts of v have an appropriately sized virtual bin available.

Let v = (x, y) be the incoming vector. Let V1, V2 be the loads before the arrival of v, and
V ′1 = V1 + x, V ′2 = V2 + y be the sum of coordinate loads after the arrival of v. By assumption,
V ′1 ≥ V ′2 , and hence V1 − V2 ≥ y − x.

We prove below that the algorithm preserves the four invariants given in Figure 3, in particular,
invariant 2 in Figure 3 says that the sum of the sizes of the open virtual bins is c(V1 − V2). By
definition, the sum of the loads on the first coordinate is V1−V2 ≥ y−x. That is, in aggregate the
sum of sizes of open virtual bins is ≥ c(y − x).

6

𝑥

𝑦

𝑥

𝑦

𝑦 − 𝑥
𝑦 𝑐 ⋅ 𝑦 − 𝑥

Closed

𝑥

𝑦

𝑥

𝑥1

𝑦2
Closed

𝑥1

𝑥2
𝑦1

𝑦2

𝑦1

𝑦2
𝑥2

Case (𝑎) Case (𝑏) Case (𝑐)

𝑦 − 𝑥
𝑐 ⋅ 𝑦 − 𝑥

Closed

𝑐 ⋅ 𝑥 − 𝑦
Open

𝑦2
Closed

Figure 2: The various cases regarding allocation/use and reclassification of bins in the (optimal) 4/3
splittable vector bin packing algorithm. Striped regions denote the load on closed virtual bins, dotted
regions denote the load on open virtual bins, and black regions denote the load on an existing virtual bin,
which is reclassified as a closed virtual bin. Note that in Case (c), we have x1 + x2 = x, y1 + y2 = y, and
moreover y1

x1
= y2

x2
.

If any open virtual bin has size equal to c(y−x) we are done. If any such bin has size > c(y−x),
we can split this open virtual bin into two smaller open virtual bins, one of which has size exactly
c(y−x). Otherwise, if all open virtual bins are strictly smaller than c(y−x), we split the vector into
two smaller fractions, one of which can fit into one of these small open virtual bins, and reiterate
the process. We prove the theorem given below in Appendix C. The proof is based on the idea
that our algorithm maintains the invariants in Figure 3 at all times.

1. The total load on both coordinates among all closed virtual bins equals V2,

2. The total load on the first coordinate among all open virtual bins equals V1 − V2,

3. Each open virtual bin has zero load on its second coordinate, while the load on its
first coordinate occupies exactly a 1

c -fraction of the open virtual bin’s size,

4. The total load on the first coordinate among all closed virtual bins occupies at least
a 1

c -fraction of the total space allocated for closed virtual bins (we also maintain
the same invariant for the second coordinate among all closed virtual bins).

Figure 3: Invariants maintained by the (optimal) 4
3 -competitive algorithm for splittable, two dimensional

vectors. Proof that these invariants are preserved is given in Theorem 6. As discussed, one can assume
without loss of generality that V1 ≥ V2 up to a renaming of the coordinates.

Theorem 6. For d = 2 dimensions, there is an algorithm for the online Vector Bin Packing
problem which achieves a competitive ratio of 4

3 when vectors are splittable.

The Splittable Algorithm on Real Bins

We now describe how to implement Algorithm 1 with real bins. The algorithm maintains one real
bin with partially unallocated space, which is the most recently opened bin. The previous bins are
fully allocated and partitioned into closed virtual bins and open virtual bins. When the algorithm
needs to assign a vector into open virtual bins, it does so in a first fit manner. For each real bin i,

7

we maintain a value Oi, which is the total size of open virtual bins on bin i, and Ci, which is the
total size of closed virtual bins on bin i.

In general, the state of the algorithm is a sequence of bins of type A, B and at most one type
C bin. Type A bins are fully allocated real bins where Ci = 1. Type B bins are fully allocated real
bins where Oi +Ci = 1, Oi > 0 (i.e., such bins have at least one open virtual bin). A Type C bin is
a partially allocated real bin, where Oi +Ci < 1. In Appendix C, we have a figure which shows the
general state of the algorithm on real bins, and we explicitly give an algorithm on real bins that is
similar in flavor to Algorithm 1.

Unsplittable, Small Vectors

First, we describe a slight modification to our 4
3 -competitive algorithm that operates on real bins for

the splittable vector case which guarantees that a vector may be split into at most two bins. This
constraint incurs a 1 +O(ε) loss in the competitive ratio. We simulate the 4

3 -competitive algorithm
on bins of size 1− 2ε. Note that the algorithm for the original vector v iterates if Ck +Ok > 1 or
Ob < 0, where k is the Type C bin and b is the first Type B bin. In this case, instead of iterating,
we modify the algorithm by assigning the whole vector to a bin which violates a constraint. Every
time a constraint is violated, the bin to which the vector is assigned changes its type. Since a
bin can change its type at most twice and the load of v is at most ε, the assignment is feasible.
By volume consideration, this algorithm is c

1−2ε -competitive. Clearly, if the algorithm assigns the
vector to one bin, we follow this assignment. After this modification, if a vector is split, it is split
into a Type B bin and a Type C bin.

For the unsplittable case, we discretize all possible ratios by rounding each vector’s ratio down
to the nearest power of (1 +

√
ε), and assign each vector to buckets according to its ratio. For

example, for a vector (x, y) where x < y < 4x, we let r = y
x and map the vector to the bucket

corresponding to (1 +
√
ε)j , where j is defined such that (1 +

√
ε)j ≤ r < (1 +

√
ε)j+1. Based on

these buckets, the algorithm for unsplittable vectors attempts to mimic the load of the splittable
vector algorithm’s load on each bucket. As mentioned, the splittable vector algorithm may assign
a fraction to a Type B bin b and a fraction to the Type C bin k. We ensure that the rounded load
on k is smaller than the load of the splittable vector algorithm on k, but the rounded load on bin
b is just up to 2ε larger for each bucket, since each vector’s load is at most ε. Hence, we lose an
additive 2ε for each bucket, of which there are O (1/

√
ε). Therefore, the unsplittable algorithm will

never have a bin that overflows relative to an algorithm for splittable vectors that is constrained
to have bins of size 1−O(

√
ε). Moreover, we lose a multiplicative factor of 1 +

√
ε due to the fact

that we discretize the vectors. Hence, we lose a (1 + O(
√
ε))-factor in our competitive ratio. We

get the following theorem:

Theorem 7. There is a 4
3(1+ε)-competitive algorithm for the two dimensional Vector Bin Packing

problem when vectors are unsplittable and have coordinate values at most O(ε2).

2.3 A Tight Lower Bound

In this section we show a lower bound of 4
3 on the competitive ratio of any online splittable Vector

Bin Packing algorithm. This trivially extends to bin packing of unsplittable vectors, even for
arbitrarily small unsplittable vectors and for arbitrary dimension, since such settings are more
general. The proof is in Appendix D.

Theorem 8. There is no online algorithm for the online, two dimensional Vector Bin Packing
problem which achieves a competitive ratio better than 4

3 , even when vectors are splittable.

8

3 Online Multidimensional Vector Bin Packing

Splittable Vectors

For arbitrarily large d, we first give an online, deterministic algorithm for the splittable vector
setting which achieves a competitive ratio of e. Before describing the algorithm, we first imagine
infinitesimally small bins consecutively along the real interval [0,∞) (at the limit each bin is a real
number). Actual bins, however, are integer-aligned intervals of length 1 along [0,∞) (i.e., bin i
corresponds to the interval [i− 1, i) for all integers i ≥ 1).

Our algorithm utilizes a probability density function (to be defined). When receiving an input
vector it, allocates fractions thereof among the infinitesimally small bins. That is, deterministically
allocating (infintesimally small) fractions of the input vector among these infinitesimally small bins,
proportional to the density function. Let Vk denote the total load that has arrived thus far along
dimension k for k ∈ {1, . . . , d}. Our algorithm maintains V = max{V1, . . . , Vd} ≤ opt at all times.

1 while vector vi arrives do
2 Split vi into infinitesimally small fractions
3 while some infinitesimal fraction of vi, δvi, remains to be allocated do
4 Recompute V1, . . . , Vd, (every Vi is incremented by δvi)
5 Let V = max{V1, . . . , Vd}
6 Allocate δvi to the infinitesimally small bins in the interval I = [V, e · V]

7 Bin x ∈ I is allocated a fraction of δvi according to the density function f(x) = 1
x

Algorithm 2: Sliding Window Assignment.

We prove the following theorem in Appendix E.

Theorem 9. Algorithm Sliding Window Assignment is a deterministic e-competitive algorithm for
the online multidimensional Vector Bin Packing problem for any dimension d.

The following algorithm is implementation of Algorithm 2 on real bins. Note that, the following
algorithm assumes that upon of arrival of a vector vi, dV e does not increase (if it does we split the
vector so that it does not change).

1 while vector vi arrives do
2 Let V = max{V1, . . . , Vd}
3 Allocate vi to bin j according to the following fraction pij
4

pij =

ln
(
j+1
j

)
dV e ≤ j ≤ bdV e · ec

ln
(
dV e·e
j

)
j = ddV e · ee

0 otherwise

Algorithm 3: Sliding Window Assignment.

Proof. We show the following three things which give the theorem:

1. Each vector is fully allocated.

2. The load on each dimension of each bin is at most 1.

3. The number of bins opened by the algorithm is at most e · opt + 1.

9

We first prove the each vector is fully allocated, i.e.
∑

j pij = 1:

∑
j

pij = ln

(
dV e+ 1

dV e

)
+ln

(
dV e+ 2

dV e+ 1

)
+· · ·+ln

(
ddV e · ee
ddV e · ee − 1

)
+ln

(
dV e · e
ddV e · ee

)
= ln

(
dV e · e
dV e

)
= 1

Second, for each bin j and each dimension k we prove that the total load fractionally assigned
is at most 1. The total load assigned to bin j on dimension k is given by:∑

i

vik · pij ≤ j ·
∑
i

pij ≤ j · ln(
j + 1

j
) ≤ 1,

where the first inequality follows from pi′j = 0 if dV e > j. In particular if
∑i′−1

i=1 vik > j then

dV e > j. The second inequality follows from pij ≤ ln(j+1
j). The third inequality follows from

ln(1 + 1/j) ≤ 1/j.
Third, clearly the algorithm opens at most ddV e · ee bins. Since opt = dV e, we get that the

algorithm opens at most dopt · ee ≤ e · opt + 1 bins. This gives the theorem.

In the following subsections, we simulate Algorithm Sliding Window Assignment and generalize
the techniques from [12] to achieve a randomized and deterministic algorithm for the unsplittable,
small vector case.

3.1 A Randomized Algorithm for Unsplittable, Small Vectors

Our randomized unsplittable vector algorithm simulates Algorithm Sliding Window Assignment on
bins of smaller size, and uses its allocation as a probability function in order to randomly choose a
bin. If the vector fits into the randomly chosen bin, it assigns the vector to the bin, and otherwise
it passes the vector to a second stage First Fit algorithm that assigns the vector to spillover bins.
Our main lemma bounds the total volume of overflowing vectors given to the First Fit algorithm.

1 while vector vi arrives do
2 Simulate Algorithm 3 on bins of size 1− ε
3 Let pi,j denote the fraction of vector vi assigned to bin j by Algorithm 3
4 Assign vector vi to a random bin by interpreting the fractions pi,j as probabilities
5 Let j∗ denote the randomly chosen bin
6 if vector vi fits into bin j∗ then
7 Assign vector vi to bin j∗

8 else
9 Assign vector vi using the First Fit algorithm to spillover bins

Algorithm 4: Randomized Sliding Window Assignment - Unsplittable.

Note that simulating Algorithm 3 on (1− ε)-sized bins is equivalent to multiplying each vector
by a (1 + ε)-factor. By volume consideration, since each bin is smaller by a (1 − ε)-factor, the
competitive ratio increases by at most a (1 + ε)-factor. In addition, we have the property that∑

i pi,jvik ≤
1

1+ε since Algorithm 3 gives a feasible assignment to bins of size (1− ε). Let Is denote
the indices of vectors assigned by the First Fit algorithm (in line 9), and let V s be the total volume
of these vectors, namely V s =

∑
i∈Is

∑
k∈[d] vik.

Observation 3. The number of bins opened by the First Fit algorithm is at most 2V s + 1.

This holds since the First Fit algorithm guarantees that there is at most one bin with total volume
less than 1

2 . We first bound the probability that a vector does not fit in its randomly chosen bin,
we prove the following lemma and theorem in Appendix E.

10

Lemma 10. If the maximum coordinate on each vector is smaller than ε2/(24 log d) (for ε ≤ 1/2),
then the probability that a vector does not fit in its randomly chosen bin is at most 1/d3.

Theorem 11. Algorithm 4 achieves an expected competitive ratio of e(1 + ε) + o(1) for the Vector
Bin Packing problem when d is arbitrary and all vectors are unsplittable and small (i.e., all values
are smaller than ε2/(24 log d)), where o(1) is an arbitrarily small function of 1/d.

3.2 A Deterministic Algorithm for Unsplittable, Small Vectors

Finally, we introduce a deterministic algorithm that is e(1 + ε)-competitive when vectors are small
and unsplittable. We fix the index i of vector vi, dimension k ∈ [d], and an open bin j. Let
f(x) = αx where α = eε/2, and let Lij,k =

∑
i∈V [j] vik, where V [j] is the set of vectors that are

(virtually) assigned to bin j. The algorithm uses the following potential function, where A is the
current set of open bins (which may change and does not include the spillover bins opened by the
First Fit algorithm):

Φi
A =

∑
j∈A

∑
k∈[d]

Φi
j,k, Φi

j,k = f(Lij,k − α ·
∑
i′≤i

pi′,jvik).

1 while vector vi arrives do
2 Simulate Algorithm 3 on (1− ε̃) sized bins
3 Let pi,j be the fractional assignment of vector i to bin j
4 Assign vector vi to the bin j∗ which minimizes the potential Φi

{j|pi,j>0}
5 if vector i fits into bin j∗ then
6 Assign vector i to bin j∗

7 else
8 Assign vector i using the First Fit algorithm to spillover bins

Algorithm 5: Sliding Window Assignment - Unsplittable Determinstic.

We prove the following theorem in Appendix E.

Theorem 12. There exists a deterministic (e(1 + ε) + o(1))-competitive algorithm for the Vector

Bin Packing problem for arbitrary d when vectors are unsplittable and smaller than O(ε2

log d log(1
ε)

),

where o(1) is an arbitrarily small function of 1/d.

References

[1] Yossi Azar, Ilan Reuven Cohen, Seny Kamara, and Bruce Shepherd. Tight bounds for on-
line vector bin packing. In Proceedings of the 45th annual ACM Symposium on Theory of
Computing, 2013.

[2] Anton Beloglazov and Rajkumar Buyya. Energy efficient resource management in virtualized
cloud data centers. In Proceedings of the 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, 2010.

[3] Chandra Chekuri and Sanjeev Khanna. On multi-dimensional packing problems. In Proceedings
of the 10th annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

[4] Edward G. Coffman Jr., János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo.
Bin packing approximation algorithms: survey and classification. In Handbook of Combinato-
rial Optimization, pages 455–531. Springer, 2013.

11

[5] U. S. Environmental Protection Agency. Report to congress on server and data center energy
efficiency public law 109-431. Technical report, EPA ENERGY STAR Program, 2007.

[6] Leah Epstein. On variable sized vector packing. Acta Cybernetica, 16(1):47–56, 2003.

[7] Donald K. Friesen and Michael A. Langston. Variable sized bin packing. SIAM Journal on
Computing, 15(1):222–230, 1986.

[8] Gabor Galambos and Gerhard J. Woeginger. On-line bin packing a restricted survey.
Zeitschrift für Operations Research, 42(1):25–45, 1995.

[9] Michael R. Garey, Ronald L. Graham, David S. Johnson, and Andrew Chi-Chih Yao. Resource
constrained scheduling as generalized bin packing. Journal of Combinatorial Theory, Series
A, 21(3):257–298, 1976.

[10] Minos N. Garofalakis and Yannis E. Ioannidis. Scheduling issues in multimedia query opti-
mization. ACM Computing Surveys, 1995.

[11] Minos N. Garofalakis and Yannis E. Ioannidis. Multi-dimensional resource scheduling for par-
allel queries. In Proceedings of 1996 ACM SIGMOD International Conference on Management
of Data, 1996.

[12] Sungjin Im, Nathaniel Kell, Janardhan Kulkarni, and Debmalya Panigrahi. Tight bounds for
online vector scheduling. CoRR, abs/1411.3887, 2014.

[13] Adam Meyerson, Alan Roytman, and Brian Tagiku. Online multidimensional load balanc-
ing. In International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems. Springer Berlin Heidelberg, 2013.

[14] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics for vector bin
packing. Microsoft Research T.R., 2011.

[15] Meikel Poess and Raghunath Othayoth Nambiar. Energy cost, the key challenge of today’s data
centers: a power consumption analysis of tpc-c results. Proceedings of the VLDB Endowment,
2008.

[16] Sebi Ryffel, Thanos Stathopoulos, Dustin McIntire, William Kaiser, and Lothar Thiele. Accu-
rate energy attribution and accounting for multi-core systems. In Technical Report 67, Center
for Embedded Network Sensing, 2009.

[17] Steven S. Seiden, Rob Van Stee, and Leah Epstein. New bounds for variable-sized online bin
packing. SIAM Journal on Computing, 32(2):455–469, 2003.

A Restricted Fit Proofs

Proof of Lemma 1

Proof. Let nA, nB be the number of Type A bins with a load of a and the number of Type B bins
with a load of b, respectively. By definition (we omit the additive 1 in the numerator because there
is at most one bin which is neither Type A nor Type B):

T (a, b) = max
nA≥0,nB≥0

nA + nB
max{nAax + nBbx, nAay + nBby}

.

12

Let k = nA/nB, then we have:

T (a, b) = sup
k≥0

1 + k

max{ax + kbx, ay + kby}
= sup

k≥0
min

{
1 + k

ax + kbx
,

1 + k

ay + kby

}
.

Let f1(k) = 1+k
ax+kbx

, f2(k) = 1+k
ay+kby

. Taking the derivative of f1, f2, one observes that both f1 and

f2 are monotone functions. Note also that f1(0) = 1/ax, f2(0) = 1/ay, while f1(k) → 1/bx and
f2(k)→ 1/by as k →∞. These functions intersect at most once for k′ such that ax+k′bx = ay+k′by
(if k′ = (ay − ax)/(bx − by) > 0). If the two functions do not intersect, then the maximum is at
k = 0 or at k →∞. If these functions do intersect, then the minimum function is the composition
of two monotone functions from [0, k′] and [k′,∞). Therefore, the maximum is at k = 0, k →∞, or
k = k′. If the maximum is at k = 0, then min{f1(0), f2(0)} ≤ 1/ay, if the maximum is at k →∞,
then limk→∞min{f1(k), f2(k)} ≤ 1/bx, if the maximum is at k = k′, then

f1(k
′) = f2(k

′) =
ay − ax + bx − by
bxay − axby

.

Proof of Lemma 2

Proof. Let iã be the index of the first Type A bin with a load of ã, similarly let ib̃ be the index of

the first Type B bin with load b̃. Assume without loss of generality that iã < ib̃. Let v be a vector
that is packed into bin ib̃. Let a′ = (a′x, a

′
y) be the load of bin iã when v arrives. Since v did not fit

into bin iã (by the First Fit property), we have vy/vx ≥ f ′(a′x) ≥ f ′(ãx) since f is concave. As all

derivatives are at least f ′(ãx), then b̃y ≥ b̃x · f ′(ãx), and therefore b̃ ≥ H(ãx).

Proof of Theorem 3

Proof. Let U be the set of loads of Type A bins and R be the set of loads of Type B bins, and
nA = |U |, nB = |R|. By Observation 1, the number of total bins is at most alg ≤ nA + nB + 1.
Let ã = (ãx, ãy) ∈ U be a point such that ã ≤ a for all a ∈ U , and let b̃ = (b̃x, b̃y) ∈ R be a point

such that b̃ ≤ b for all b ∈ R. By volume consideration:

opt ≥ max

{∑
a∈A

ax +
∑
b∈B

bx,
∑
a∈A

ay +
∑
b∈B

by

}
≥ max

{
nAãx + nB b̃x, nAãy + nB b̃y

}
.

Therefore, we have
alg− 1

opt
≤ T

(
ã, b̃
)
.

By applying Observation 2 and Lemma 2 (we assume without loss of generality that b̃ ≥ H(ax)),
we have:

T (ã, b̃) ≤ T (ã, H(ax)) ≤ max
x

T ((x, f(x)), H(x)) .

It is easy to verify that the analysis is tight.

13

≥ 𝛼

≥ 𝛼

≥ 𝛼

≥ 𝛼

𝛼

𝜖

𝑎𝑖

𝜖

𝛼

Type 𝐴 bin, index 𝑖 Type 𝐵 bin, index 𝑗 > 𝑖

Figure 4: Applying an f -restricted First Fit Algorithm to packing unsplittable, small vectors. The
analysis follows similarly to that of splittable vectors.

A.1 Proof of Lemma 4

In order to bound the competitive ratio of the f -restricted First Fit Algorithm for unsplittable,
small vectors, we proceed in a manner similar to splittable vectors, and compute the worst possible
pair of bins, one of Type A and the other of Type B. That is, we map the loads on bins in the
unsplittable case to points on the curve and show that it is (1 + ε) “close” to a corresponding pair
of points on the curve that have a good competitive ratio.

Let (ai, bi) be the loads on the worst Type A bin and Type B bin, respectively, where ai =
(aix, a

i
y) and bi = (bix, b

i
y). We assume without loss of generality that the bin with load ai has smaller

index (as before). Consider the square of side length ε with lower left point ai (see Figure 4). The
top curve must intersect either the top or right side of the square (or both), otherwise any vector

would fit into this bin. Consider the right most intersection point af = (afx, a
f
y). Since f is concave,

the derivative at afx must be smaller than the slope of the line connecting ai to af . Therefore, any
vector that does not fit into this bin must have derivative at least f ′(afx), and hence biy/b

i
x ≥ f ′(a

f
x).

Let bf = H(afx), and v = (vx, vy) be a vector that was rejected from bin bi. Let b̃ = bi + γv for

γ ∈ [0, 1] be a point on the right curve. Note that vy/vx ≥ f ′(afx) since this vector was also rejected

from bin ai (by the First Fit property), and biy/b
i
x ≥ f ′(afx). We get that b̃y/b̃x ≥ f ′(afx), and

therefore b̃ ≥ bf , which implies bix ≥ b
f
x − ε and biy ≥ b

f
y − ε. Therefore, by volume consideration we

have T (ai, bi) ≤ T (af , bf)(1 +O(ε)).

B Linear and Piecewise Linear Functions for f-Restricted First
Fit Algorithms

The f-restricted First Fit Algorithm with Linear Constraints

We first focus on f -restricted First Fit algorithms when f is a linear function. That is, f(x) =
min{c+ a · x, 1}. Note that the competitive ratio must be at least 1

c , and a is some constant which
depends on c. We then seek to optimize our choice of f among all linear functions. We describe
the linear function as a pair of points (0, c), (d, 1). By volume consideration and by Theorem 3,
it is enough to consider the points a1 = (0, c), a2 = (d, 1), and their corresponding mapped pairs
b1 = H(0) b2 = H(d). The competitive ratio is given by max

{
1
c , T ((0, c), b1), T ((d, 1), b2)

}
. The

derivative at a2 is 0, and hence we have H(d) = b2 = (c, 0). Therefore, first we will demand that
T ((d, 1), (c, 0)) = 1

c , which implies 1−d+c
c = 1

c , and hence d = c. Next we demand that the second

14

pair also satisfy T ((0, c), (x1, y1)) = 1
c , where b1 = (x1, y1). This implies x1−y1+c

x1·c = 1
c , and hence

y1 = c. Note that, the expression T ((0, c), (x1, c)) is minimized for x1 = 1, and satisfies y1 = (1−c)
c ·x1

(since (x1, y1) = H(0)). Thus we get c = (1−c)
c , which implies 1

c = φ = (1 +
√

5)/2 ≈ 1.618 is the
best approximation ratio for linear constraints.

Improving the Constraint Function

The linear function that we presented contains two lines: the line that connects (0, c) to (c, 1)
and the line that connects (c, 1) to (1, 1). Instead of finding the direct representation of the
optimal function, we expand the previous function to a sequence of lines that linearly approximate
the optimal function in the following manner: for any sample points P 0, P 1, ..., Pn+1 such that
P 0 = (0, c), Pn+1 = (1, 1), and P i ≤ P i+1 for each i, we define f(x) as

f(x) = P iy +
P i+1
y − P iy

P i+1
x − P ix

(x− P ix), for P ix ≤ x ≤ P i+1
x .

It is easy to verify that f is a monotone non-decreasing concave function, moreover the competitive
ratio of the f -restricted First Fit Algorithm for this choice of f is

max
x

T ((x, f(x)), H(x)) = max
i
T (P i, H(P ix)),

since for P ix < x < P i+1
x , H(x) = H(P ix) and P ix ≤ (x, f(x)). Define the ith slope as

M i =
P i+1
y − P iy

P i+1
x − P ix

.

Approximately Optimizing the Function

As mentioned, we find n sample points that approximate the optimal function f which minimizes
the competitive ratio. Clearly, we should demand that the competitive ratio be equal at all points,
so that for all i we have T (P i, H(P i)) = 1

c . Therefore, we can demand that HR(P i) be mapped to
one of the sample points, namely Pn−i. We will have that for any i, HR(P ix) = Pn−i. Therefore,

M i =
Pn−ix

Pn−iy

. (1)

For a given c, the question is whether we can find such a set of points such that these conditions
hold. As in the linear case, we have P 0 = (0, c) and Pn = (c, 1), and hence we can compute
M0 using Equation (1). Since M0 = c, we have that P 1 = (ε, c + ε ·M0), since we are linearly
approximating the function. Now we can compute Pn−1, since we demand that the following hold
for k = 0:

T (P k+1, Pn−k−1) =
1

c
, (2)

Pn−ky − Pn−k−1y

Pn−kx − Pn−k−1x

= Mn−k−1 =
P k+1
x

P k+1
y

. (3)

These two equations uniquely define Pn−1 (given P k+1 and c, the equations are linear). We can
repeat this method iteratively for any k to compute P k+1 and Pn−k−1 under the assumption that

we know P k and Pn−k. First, we use Equation (1) to compute Mk and get Mk = Pn−kx

Pn−ky
, and then

15

we compute P k+1 = P k + (ε,Mk · ε). Finally, we use Equation (2) and Equation (3) to compute
Pn−k−1. This process stops for some k′ such that P k

′+1
x ≥ Pn−k′−1x , in which case n = 2k′+1. Note

that we do not determine Mk′ , but if Mk′ ≥ Pn−k
′

x

Pn−k
′

y

= Pk
′+1

x

Pk
′+1

y

, then the competitive ratio of the f -

restricted First Fit Algorithm that uses the sample points P 0, . . . , Pn+1 is 1
c . We numerically found

an approximation to the best such function (using piecewise linear functions), giving a competitive
ratio of 1

c ≈ 1.48.

C The 4
3-competitive Algorithm

C.1 Proof of Theorem 6

Our online algorithm maintains four invariants regarding the virtual bins, as given in Figure 3.
Recall that we may assume, without loss of generality, that V1 ≥ V2:

It is clear from invariants 3 and 4 that our algorithm is c-competitive if it is able to maintain
these invariants at all times. By proceeding via an inductive argument, we assume these invariants
hold, and then show that they still hold after an arbitrary vector arrives.

Case 1, i.e. x ≥ y. As specified by our algorithm, we allocate two virtual bins, the first of which
is a closed virtual bin of size y and the second of which is an open virtual bin of size c(x−y). After
the assignment closed virtual bin is completely occupied on both coordinates (hence, the total load
among closed virtual bins on both coordinates increases by y) while the open virtual bin has zero
load on the second coordinate and x− y load on the first coordinate and total size of c(x− y). It
is easy to verify that all invariants continue to hold.

Case 2, y ≥ c
c−1x > x, i.e. x ≤ (c− 1)(y− x). In this case, since we clearly have y > x, the gap

between V1 and V2 closes, and hence the main idea is to reclassify an open virtual bin of appropriate
size as a closed virtual bin. Since we assume V ′1 ≥ V ′2 , via our second invariant, we know that there
exist an open virtual bin with a load of y − x (which is occupied by a 1

c -fraction of load on the
first coordinate, zero on the second coordinate). This open virtual bin has a total size of c(y − x),
and hence has (c− 1)(y− x) free space (note that the second coordinate is completely empty). We
put the vector (x, y) in this virtual bin (the vector (x, y) entirely fits due to our assumption that
x ≤ (c− 1)(y − x)) and declare the open virtual bin as a closed virtual bin. Note that the load on
both coordinates of the closed virtual bin is y, and hence the load on each coordinate occupies at
least a 1

c -fraction of the bin’s size. Moreover, the total load among all open virtual bins decreases
by y − x, while the total load among all closed virtual bins increases by y. Hence, all invariants
continue to hold in this case.

Case 3, x < y < c
c−1x, i.e. x > (c− 1)(y − x). The algorithm proceeds in a manner similar to

the previous case, except that we no longer have the property that the vector (x, y) entirely fits
into the large closed virtual bin. To take care of this issue, the algorithm allocates an additional
closed virtual bin and splits the vector (x, y) across these two closed virtual bins.

Let f = (c− 1)(yx − 1) be the fraction according to the algorithm, x1 = f · x, x2 = (1− f) · x,
y1 = f · y, y2 = (1− f) · y. Note that the size of the first bin is c(y − x) and the size of the second
bin is y2. Next, we show that the assignment is feasible. The open bin’s load on the first coordinate
after the assignment is x1 + (y − x) = (c − 1)(yx − 1)x + (y − x) = c(y − x), and the bin’s second
coordinate load is y1 = y(c−1)(yx −1) ≤ c(y−x), since y < c

c−1x. The second bin’s first coordinate
load is x2 = (1 − f)x ≤ y2, since x ≤ y, and finally the second bin’s second coordinate load is y2.
The total size is y2 + c(y − x) and the total load across both bins on each coordinate is y. So, to
maintain our invariants, we need to guarantee that y is at least a 1

c -fraction of the total size. In

16

Type 𝐴 Type 𝐵 Type 𝐶

Figure 5: A snapshot during the execution of the 4
3 -competitive algorithm. We maintain two

pointers: one for the first Type B bin that was opened, and one for the Type C bin. The striped
regions denote the load on closed virtual bins, while the dotted regions represent the load on open
virtual bins.

particular, we need:

1

c
[c(y − x) + y2] =

1

c
[c(y − x) + y − y

x
(c− 1)(y − x)] ≤ y =⇒ c ≥ y2

y2 − yx+ x2
.

As long as c satisfies this constraint in this case, all invariants continue to hold. Noting that the
expression is maximized for y

x = 2 and attains a value of 4
3 at the maximum point gives the theorem.

C.2 Implementing the 4
3
-competitive Algorithm on Real Bins

Assume without loss of generality that V1 ≥ V2. In general, the state of the algorithm can be
viewed as a sequence of various types of bins, while always maintaining two pointers to the most
recently opened bin and the first available Type B bin (see Figure 5).

Algorithm 6 shows how to implement the splittable 4
3 -competitive algorithm that operates on

virtual bins in terms of real bins.

1 while vector v = (x, y) arrives do
2 Let k be the index of the Type C bin
3 Let b be the index of the first Type B bin (b = k if such a bin does not exist)
4 if x ≥ y then
5 Assign v into bin k
6 Ck ← Ck + y, Ok ← Ok + c(y − x)

7 else
8 Ob ← Ob − c(y − x), Cb ← Cb + c(y − x)
9 if y ≥ c

c−1x then

10 Assign v into bin b
11 if x < y < c

c−1x then

12 Let f ← (c− 1)(yx − 1)
13 Assign the vector f · v into bin b
14 Assign the remaining vector (1− f) · v into bin k
15 Ck ← Ck + y(1− f)

Algorithm 6: Fractional Assignment.

17

The algorithm ensures 0 ≤ Oi + Ci ≤ 1, Oi ≥ 0, Ci ≥ 0, by splitting the vector appropriately
and iterating. It easy to verify that this algorithm mimics Algorithm 1 and hence has the same
competitive ratio, since for each bin i the values Ci, Oi exactly capture the amount of space of the
corresponding virtual bins.

D Lower Bound Proof

Proof. Our lower bound will consist of two phases. In the first phase, a larger number of vectors A
arrive of the form [1, 0], and in the second phase 2A vectors arrive of the form [12 , 1]. Suppose there
is an online algorithm with competitive ratio c. We will show that it must be the case that c ≥ 4

3 .
After the first phase, the value of opt is precisely A, and since the algorithm is c-competitive,

it cannot have more than cA bins open at the end of the first phase. In fact, we assume without
loss of generality that the algorithm opens cA bins after the first phase, since if it opens less we can
imagine opening exactly cA bins, some of which remain unused and the proof still goes through.
Hence, among these cA bins, we only have cA−A = A(c− 1) free space left in the first coordinate
(since in total the amount of space taken up by the vectors which arrive in the first phase is A on
the first coordinate). Now consider what happens by the end of the second phase, at which point
in time the value of opt is precisely 2A. Hence, at this point in time, the online algorithm is only
allowed to open an additional cA bins. Let us consider the amount of vectors from the second
phase that can fit among the first cA bins. Observe that the total space on the first coordinate
among the second-phase vectors is A, and since there is at most A(c− 1) free space left among the
first cA bins on the first coordinate, there must be at least A − A(c − 1) = A(2 − c) space from
the second-phase vectors along the first coordinate which must go into the set of bins opened by
the algorithm during the second phase. Since the second-phase vectors are of the form [12 , 1], the
second coordinate fills up at twice the rate of the first coordinate, which implies the second cA
bins must be able to accommodate 2A(2− c) space. Hence, we have 2A(2− c) ≤ cA, which implies
c ≥ 4

3 .

E Proofs of Section 3

E.1 Proof of Theorem 9

First, we must show that every vector that arrives is actually fully allocated (i.e., the algorithm
feasibly allocates vectors). Hence, we need to argue that the density function with which we
spread each infinitesimal vector δv among the infinitesimal bins within the interval I = [V, e · V]
is a valid probability density function, where V = max{V1, . . . , Vd}. This holds, since we have:∫ e·V
V

1
xdx = ln(x)|e·VV = ln

(
e·V
V

)
= 1.

The next thing we must ensure is that, for each dimension k and each bin b that lies on the
interval [0,∞), the total load does not exceed 1 (i.e., our algorithm obeys each bin’s capacity
constraint). To this end, fix a dimension k and a bin b ∈ [0,∞). Observe that, once V > b, we
will never allocate any fraction of an arriving vector v to bin b. Therefore, we need only concern
ourselves with the total load we place on dimension k of bin b for all values V ≤ b. We consider
how much load we place on bin b when a small load of dv arrives on dimension k. Since the density
at bin b is at most 1

b (as we also do not fractionally allocate a vector to b if e · V < b), we place at

most dv
b load. Hence, the total load on dimension k of bin b is at most:

∫ b
0

1
bdv = 1

b · b = 1. It is
easy to verify that the algorithm is e-competitive, since it never places a load on bins beyond e ·V ,
and hence it opens at most e · V ≤ e · opt bins (note that V is potentially not an integer, so the
number of actual bins opened will be within an additive constant of e · opt).

18

E.2 Proof of Lemma 10

To prove this lemma, we consider a variant of the algorithm above with no overflow bins. For this
variant, bins will overflow on occasion. We seek to give an upper bound on the probability that a
specific bin overflows. This will give a bound on the probability that a new vector vi results in an
overflow.

Suppose vector vi is randomly assigned to a specific bin b. For a fixed coordinate k, let ai =
vik · 24 log dε2

. Let X` be the indicator random variable that is 1 if and only if vector v` is assigned
to bin b. Clearly, if vector vi does not fit into bin b due to dimension k, then we must have
X =

∑
`<i a`X` ≥ 24 log d

ε2
− 1 (otherwise, vector vi would not overflow due to dimension k). Hence,

upper bounding the probability that this event occurs is sufficient. We let µ = 24 log(d)
ε2·(1+ε) and note

that E[X] =
∑

`<i a`E[X`] = 24 log(d)
ε2

∑
` p`,bv`k ≤

24 log(d)
ε2·(1+ε) = µ (where the inequality follows since

we simulate the splittable algorithm on bins of size 1− ε). Moreover, since a` ∈ [0, 1], we can apply
the Chernoff bound with δ = 11ε

12 < 1 (note that (1 + δ)µ ≤ 24 log d
ε2
− 1) to get:

Pr

[
X ≥ 24 log d

ε2
− 1

]
≤ Pr[X ≥ (1 + δ) · µ] ≤ e−

δ2µ
3 = e

− ε
2·112·24 log d

122·3ε2(1+ε) ≤ 1

d4
.

Using the union bound over all dimensions bounds the probability that vi overflows by 1
d3

.

E.3 Proof of Theorem 11

By Theorem 9 and by volume consideration, the first stage of the algorithms uses e · (1 + ε) · opt
bins. Using Lemma 10, we can bound the expected total load of vectors given to the First Fit
algorithm. This is at most the total load times the probability that a vector overflows, which is at
most d·opt

d3
= opt

d2
. By Observation 3, we use at most an additional O

(
opt
d2

)
bins.

E.4 Proof of Theorem 12

If all vectors are smaller than ε2

60 log d , we show a (1 + ε̃)e-competitive algorithm where ε̃ = ε · (1 +

log(1ε)). We multiply each coordinate by Q = 60 log(d)
ε2

(ε ≤ 0.5). For ease of presentation we still use
v as the transformed vector (i.e., originally, all entries in v were small, but after this transformation,
all entries are in [0, 1]). We assume that for all vectors i and dimensions k ∈ [d], if vik > 0 then
vik ≥ maxk

vik
d2

(we show how to omit this assumption later).
We fix the index i of vector vi, dimension k ∈ [d], and an open bin j. Let f(x) = αx where

α = eε/2, and let Lij,k =
∑

i∈V [j] vik, where V [j] is the set of vectors that are (virtually) assigned
to bin j. By virtual, we mean that each vector is assigned to a bin, even if it overflows. Note that
Lij,k is the load on bin j of dimension k in the virtual setting after vectors v1, . . . , vi have arrived.
The algorithm uses the following potential function, where A is the current set of open bins (which
may change and does not include the spillover bins opened by the First Fit algorithm):

Φi
A =

∑
j∈A

∑
k∈[d]

Φi
j,k

Φi
j,k = f(Lij,k − α ·

∑
i′≤i

pi′,jvik).

19

1 while vector vi arrives do
2 Simulate Algorithm 3 on (1− ε̃) sized bins
3 Let pi,j be the fractional assignment of vector i to bin j
4 Assign vector vi to the bin j∗ which minimizes the potential Φi

{j|pi,j>0}
5 if vector i fits into bin j∗ then
6 Assign vector i to bin j∗

7 else
8 Assign vector i using the First Fit algorithm to spillover bins

Algorithm 7: Sliding Window Assignment - Unsplittable Determinstic.

Observe that a vector vi fits into bin j if Lij,k + vik ≤ Q for every k ∈ [d], and
∑

i pi,jvik ≤
Q
1+ε̃

since Algorithm 3 gives a feasible assignment to bins of size (1− ε̃). Our main lemma bounds the
total volume that is passed to the second phase First Fit algorithm. First, we give the following
lemma.

Lemma 13. Φi
A is non-decreasing in i, where A = {j|pi,j > 0}.

Proof. We use a probabilistic argument to prove that there exists a bin j which does not increase
the potential function. Assume that we fix the value of Φi−1

A and assign vector vi to bin j according

to the probability pi,j . We will show that E[Φi
A] ≤ Φi−1

A . This implies that there exists a bin j
which minimizes the potential. For any fixed i, j, k we get:

E[Φi
j,k] = pi,jf(Li−1j,k + vik − α ·

∑
i′≤i−1

pi′,jvik − αpi,jvik)

+ (1− pi,j)f(Li−1j,k − α ·
∑
i′≤i−1

pi′,jvik − αpi′,jvik)

= Φi−1
j,k · α

−αpi,jvik · (pi,j(αvik − 1) + 1)

≤ Φi−1
j,k · α

−αpi,jvik · (pi,jvik(α− 1) + 1)

≤ Φi−1
j,k · exp (−α logα · pi,jvik) · exp (pi,jvik(α− 1))

≤ Φi−1
j,k ,

where the first inequality follows from ax − 1 ≤ x(a − 1) for any a ≥ 1 and x ∈ [0, 1], the second
inequality follows from 1+x ≤ ex, and the last inequality follows from α logα ≥ α−1 for α ≥ 1.

Let Is denotes the indices of vectors assigned by the First Fit algorithm, and let V s be the total

volume of these vectors, namely V s =
∑
i∈Is

∑
k∈[d]

vik.

Lemma 14. At any point in the execution of Algorithm 7, we have V s ≤ 2·e·opt
d2

.

Proof. Note that, when vector vi arrives, if pi,j = 0 then Φi
j,k does not change. Using Lemma 13

and the observation that Φ0
j,k = 1, we conclude that

Φi
A ≤ e · d · opt. (4)

Next, as in the randomized algorithm, we bound the total volume of vectors given to the First
Fit algorithm, namely V s. For each i ∈ Is, define k = k(i) to be an arbitrary dimension k with
Lij,k > Q (such a dimension k exists since vi was added to Is).

20

V s =
∑
i∈Is

∑
k′∈[d]

vik′

=
∑
j∈A

∑
k∈[d]

∑
i∈V [j]∩Is

∑
k′∈[d]

vik′

≤
∑
j∈A

∑
k∈[d]

∑
i∈V [j]∩Is

d3vik

≤ d3
∑
j∈A

∑
k∈[d]

(Lij,k − (Q− 1))+

where the first inequality follows from the assumption that vik ≥ maxk vik
d2

, and the second inequality

follows since vik ≤ 1. Note that we define (x)+ = max{x, 0}. Let Q′ = Q
1+ε̃ , we claim that for all

i, j, k:
Φi
j,k ≥ 0.5 · d6(Lj,k −Q+ 1)+ (5)

This inequality trivially holds if Lij,k ≤ Q−1 since Φi
j,k is always non-negative. Otherwise, we have

Φi
j,k ≥ αL

i
j,k−αQ

′

≥ αL
i
j,k−(1+ε)Q

′+0.4εQ′

≥ αL
i
j,k−(1+ε)Q

′+0.2εQ

= d6αL
i
j,k−(1+ε)Q

′

≥ 0.5 · d6(Lij,k − (1 + ε)Q′)+

≥ 0.5 · d6(Lij,k −Q+ 1)+

where the first inequality follows from
∑

i pi,jvik ≤
Q
1+ε̃ = Q′ for every k, j, the second inequality

follows from eε/2 ≤ 1+0.6ε for ε ≤ 0.5, the third inequality follows by definition of Q′ and 1+ ε̃ ≤ 2,

the fourth inequality follows since Lij,k − (1 + ε)Q′ ≥ 2 log(1
ε
)

ε and e
εx
2 ≥ x

2 for x ≥ 4 log(1
ε
)

ε .
Finally we bound V s using Equation (4) and Equation (5):

V s ≤ d3
∑
j∈A

∑
k∈[d]

(Lj,k −Q+ 1)+ ≤
2d3

d6

∑
j∈[m]

∑
k∈[d]

Φj,k ≤
2 · e · opt

d2

We now conclude the proof of Theorem 12. Similarly to the randomized case, by Theorem 9 and
by volume consideration, the first stage of the algorithm uses e · (1 + ε̃) ·opt bins. Using Lemma 14
and Observation 3, we conclude that we open at most an additional factor of (1 + o(1)) bins due
to the First Fit algorithm. Finally, we may omit the assumption that for all i and for all k ∈ [d]
such that vik > 0 we have vik ≥ maxk vik

d2
. We do this by imagining all values vik that are strictly

less than maxk vik
d2

are “set” to zero. This incurs an additional factor of
(
1 + 1

d

)
in the competitive

ratio, since we need to resize bins in the simulation of Algorithm 3 in order to guarantee a feasible
assignment.

Using these techniques above we conclude:

Remark 1. There exists a 1 + O(ε) deterministic algorithm for the online d-dimensional Load
Balancing problem when vectors are small.

21

