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Abstract. A contention resolution (CR) scheme is a basic algorithmic
primitive, that deals with how to allocate items among a random set S of
competing players, while maintaining various properties. We consider the
most basic setting where a single item must be allocated to some player
in S. Here, in a seminal work, Feige and Vondrak (2006) designed a fair
CR scheme when the set S is chosen from a product distribution. We
explore whether such fair schemes exist for arbitrary non-product distri-
butions on sets of players S, and whether they admit simple algorithmic
primitives. Moreover, can we go beyond fair allocation and design such
schemes for all possible achievable allocations.

We show that for any arbitrary distribution on sets of players S, and
for any achievable allocation, there exist several natural CR schemes
that can be succinctly described, are simple to implement and can be
efficiently computed to any desired accuracy. We also characterize the
space of achievable allocations for any distribution, give algorithms for
computing an optimum fair allocation for arbitrary distributions, and
describe other natural fair CR schemes for product distributions. These
results are based on matrix scaling and various convex programming
relaxations.

? Part of the work has been done while the author was a postdoctoral fellow at CWI
Amsterdam and TU Eindhoven.
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1 Introduction

Contention resolution (CR) schemes are basic algorithmic primitives that arise
naturally, either implicitly or explicitly, in many optimization problems. One of
the most basic version of contention resolution was first introduced by Feige and
Vondrak [11,12], in the context of allocating items to players, and it deals with
the following setting: there is a single item, and there are n players, out of which
some subset S might request the item. However, the item can only be allocated
to a single player in S and the goal is to decide how to allocate the item in some
fair and optimal way.

More formally, there is an underlying distribution P over subsets S ⊆ [n]
of n players, that specifies the probability pS that subset S of players request
the item. A CR scheme or rule R, specifies for each set S and player i ∈ S, the
probability rS,i that player i gets the item. Given such a rule R, player i receives
the item with probability gi =

∑
S:i∈S rS,i pS . The goal then, is to find a suitable

rule R, so that resulting allocation vector g = (g1, . . . , gn) satisfies some desired
fairness and optimality properties, depending on the application at hand.

Such questions arise in designing rounding-based algorithms for several prob-
lems, like those involving allocation of jobs to machines, or goods to users in
combinatorial auctions, labeling problems where a vertex must pick one of sev-
eral possible labels, assignment problems where a vertex much be matched to one
of several neighbors and so on. Here, the solution to the natural linear or convex
relaxation gives some distribution P over possible assignments for each item,
out of which exactly one must be chosen. For this reason various CR schemes
have received a lot of attention in both offline, online, stochastic and submodular
optimization [1, 8, 11,13,15,20].

Here, we focus on the most basic version due to Feige and Vondrak [11]
described above.

Feige-Vondrak scheme for product distributions. Feige and Vondrak con-
sidered the case where P is a product distribution corresponding to marginals
qi, i.e., pS =

∏
i∈S qi

∏
i/∈S(1 − qi). The goal is to allocating the item fairly,

i.e., gi = αqi (each player receives the item in proportion to its marginal prob-
ability of requesting it), with α as large as possible.

Perhaps surprisingly, the solution turns out to be quite non-trivial already
for product distributions, and the natural strategies such as allocating players
in S uniformly (rS,i = 1/|S|), or in proportion to qi (rS,i = qi/(

∑
i∈S qi)) are

sub-optimal [11]. Feige and Vondrak give the following elegant rule (that we call
FV scheme): For S = {i}, rS,i = 1, otherwise for all S with |S| > 1

rS,i =
1∑n
j=1 qj

 ∑
j∈S\{i}

qj
|S| − 1

+
∑
j /∈S

qj
|S|

 ∀i ∈ S. (1)

They show that this gives a fair allocation with gi = αqi, with the best possible

α = (1− pφ)/(
∑
i

qi) = (1−
n∏
i=1

(1− qi))/(
∑
i

qi).
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Notice that for this α, we have
∑
i gi = α(

∑
i qi) = 1 − pφ, so the rule always

allocates an item whenever possible, i.e.,
∑
i∈S rS,i = 1 for all S 6= ∅.

1.1 Extensions and Motivating Questions

The work of Feige and Vondrak [11] raises several natural questions, which mo-
tivate our work.
Question 1. (Arbitrary distributions) Can we go beyond product distributions,
and design CR schemes with similar guarantees for arbitrary distributions P?

Our starting point for exploring this question is that the need for such CR
schemes for general distributions arises while rounding fractional solutions to
more complex relaxations such as configuration LPs [3, 15, 17] or SDPs [2, 7],
where the underlying variables are correlated, and hence the distribution P on
the resulting sets S is not a product distribution.

Exploring general distributions P raises several other questions: (i) How is the
distribution P specified? (ii) How does one describe the CR scheme (specifying
rS,i explicitly for each S, i could use exponential space)? (iii) Do there exist CR
schemes with succinct description, even if P is completely arbitrary? (iv) Can
such CR schemes be found efficiently even if the algorithm only has sampling
access to P?

Question 2. (General allocation vectors) What is the space of all possible al-
location vectors g achievable by CR schemes? Given arbitrary target allocation
g and distribution P, can we efficiently determine whether g is achievable, and
find such a scheme for g if it is achievable?

In some applications, one may be interested in allocations g that are not
necessarily fair, and it is desirable to design a CR scheme that achieves such a g.
It is unclear how to do this even for product distributions P, as the FV-scheme
only describes the rule for fair allocations of the form g = α(q1, . . . , qn). The
question becomes even more intriguing for arbitrary distributions P.

Questions 1 and 2 above consider general distributions P and general allo-
cation vectors g. It is also interesting to explore the production distribution P
further.

Question 3. (Other CR schemes for product distributions) Are there other
natural CR schemes for product distributions P that achieve the same allocation
as the FV-scheme?

Finally, for general distributions P, the right generalization of a maximally
fair allocation is the widely studied notion of max-min fairness, also referred
to as lexicographic max-min fairness [4, 10, 18, 19]. We define this formally later
below, but intuitively an allocation is max-min fair if no player’s share can be
increased without decreasing that of another player with lower share.

Question 4. Can we efficiently find an optimum max-min fair allocation for an
arbitrary distribution P?

In this work, we answer these questions in the affirmative and give several
other structural and algorithmic results. These results are described in Section
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1.2 below. Our results reveal a rich general structure in CR schemes and suggest
several new directions for further investigation. Before describing our results we
give some notation and basic definitions.

Notation There are n players denoted by N = [n], and P specifies an arbitrary
distribution on subset of players S ⊆ [n] requesting the single item. We use
supp(P) to denote the support of P, and pS to denote the probability of set S
under P. We use qi =

∑
S3i pS to denote the marginal probabilities of player i

requesting the item, and use P = 〈q1, . . . , qn〉 to denote the product distribution
on n players with marginals q1, . . . , qn respectively. A CR scheme R, specifies
the probabilities rS,i of giving the item to player i ∈ S upon seeing the set S. We
say that an allocation vector g = (g1, . . . , gn) is achievable if there exists some
CR scheme R such that for each i ∈ [n]

gi = gi(R,P) :=
∑
S⊆[n]

rS,i pS .

The achievable vectors g form a convex polyhedral set G = G(P) (see Section
1.3) and we use int(G) to denote the interior of G. We call a goal vector maximal
if an item is assigned whenever possible, i.e., for all S 6= ∅,

∑
i∈S rS,i = 1, or

equivalently when
∑
i gi = 1 − p∅. Denote GM (P) = {g ∈ G(P) :

∑
i∈[n] gi =

1− p∅} as the set of maximal achievable vectors. While we state our results for
maximal achievable vectors g ∈ GM (P), they hold for any g ∈ G(P) by a simple
reduction3.

Max-min Fairness. The FV allocation is both fair and maximal. However,
for general distributions P, both these properties need not hold simultaneously4.
One must allow players to have different αi = gi/qi, and the right notion to
consider is max-min fairness5.

For a vector α = (α1, . . . , αn), let α↑ be the vector with entries of α sorted
in non-decreasing order. Given vectors α, β ∈ Rn we say that α is fairer than β,
denoted as α � β, if α↑ is lexicographically at least as large β↑ (either α↑ = β↑,
or there is an index k ∈ [n] such that α↑(i) = β↑(i) for i < k and α↑(k) > β↑(k)).
For an achievable goal vector g ∈ G(P), let α(g) denote the vector with entries
αi(g) = gi

/
qi. Then we say that g is a max-min fair allocation if α(g) � α(g′)

than any other feasible allocation g′. It is not hard to see that such an allocation
is also maximal.

3 Define a distribution P̃ on [n+1] players, where for S ⊆ [n+1], we set p̃S = pS\{n+1}
if n+1 ∈ S and p̃S = 0 otherwise, and gn+1 = 1−p∅−

∑
i∈[n] gi. Then

∑
i∈[n+1] gi =

1− p∅ and whenever the item is assigned to player n+ 1 in the CR scheme for P̃ we
do not assign it at all in the scheme for P.

4 Suppose n > 3 and S = {1} or S = {1, . . . , n}, each with probability 1/2. Then
q1 = 1 and qi = 1/2 for i ≥ 2. For a balanced allocation with g = αq, the best g is
(1/(n− 1), 1/2(n− 1), . . . , 1/2(n− 1)), but here

∑
i gi < 1− p∅.

5 In the example above, this allows one to achieve the allocation (1/2, 1/2(n −
1), . . . , 1/2(n− 1)), which is clearly better.
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More generally, we will consider max-min fair allocations with respect to any
priority values of the players V = 〈v1, . . . , vn〉, where vi ∈ R+ and αVi (g) =
gi
/
vi, and define the fairness relation (�V ) accordingly (the special case above

corresponds to V = q). That is, an achievable goal vector g ∈ G(P) is max-min
fair with respect to V , if g �V g′ for any achievable vector g′ ∈ G(P).

1.2 Our Results

We first show that there exist very natural and succinct to describe CR schemes,
even under the most general setting of arbitrary distribution P and any feasible
allocation vector g.

Weight-based schemes A CR scheme is weight-based if it has the following
form: Each player i ∈ [n] has a (fixed) weight wi ≥ 0, and for every non-empty
set S and player i ∈ S,

rS,i = wi/
(∑
j∈S

wj
)
.

That is, for each set S the rule simply assigns the item to i ∈ S with probability
proportional to wi. Note that as the weights wi are independent of S, the CR
rule is extremely simple and is succinctly described by only n numbers. Besides
simplicity this rule also has several other useful properties, and is widely studied
in social discrete choice and econometrics and is referred to as the Multinomial
Logit Model [14,22,26].

Theorem 1. For any distribution P on the players, and any maximal achievable
allocation vector in g ∈ int(GM (P)), there exists a weight-based scheme achieving
g.

We remark that the condition g ∈ int(GM ) is necessary. E.g., suppose n = 2, and
S = {1} or {1, 2} with probability 1/2 each. Then the allocation g = (1/2, 1/2) is
achievable (choose player 1 if S = {1} and player 2 otherwise). But in a weight-
based scheme as player 2 is only chosen with probability w2/(w1 + w2) when
S = {1, 2}, and as p1,2 = 1/2, its allocation approaches 1/2 only as w2/w1 →∞.

We give two proofs of Theorem 1. The first is based on formulating a suitable
max-entropy convex program [16, 27] and using convex programming duality
[5]. The second proof is based on applying the classic matrix-scaling algorithm
[21,23,25] to a suitably chosen matrix.

These proofs give algorithms that take P and g as input and some error
parameter ε > 0, and return weights w corresponding to some achievable ĝ with
‖g− ĝ‖ ≤ ε (if it exists) in time poly(n, supp(P), log(1/ε)). However, this is not
so useful as the support of P is exponentially large typically. Using standard
sampling based techniques, these can be adapted to run with only access to
samples from P. This removes the dependence on supp(P) at the expense of
increasing the dependence on ε from log(1/ε)O(1) to 1/εO(1).
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Theorem 2. Given sampling access to P, there are algorithms based on convex
programming and on matrix-scaling, that given a target allocation g and ε > 0,
with high probability, find some ĝ ∈ G(P) satisfying ‖g − ĝ‖∞ ≤ ε, or certify
that no such ĝ exists. Both algorithms use O(ε−2 log n) samples and run in time
poly(n, ε−1).

Permutation schemes and characterizing the set GM Next, we consider
another natural class of CR schemes based on what we call the permutation
scheme. In a permutation scheme, the players are ordered according to some
fixed permutation π, and given a set of players S, the item is assigned to the
first player in S according to π.

We show the following general result.

Theorem 3. For any arbitrary distribution P and given any feasible goal vector
g ∈ Gm(P), there exists a CR scheme of the following form: A random permuta-
tion π is chosen from a (fixed) distribution, depending only on g and P, over at
most n+ 1 permutations. Then, given a set S, the item is all allocated according
to the permutation scheme given by π.

Notice that these schemes are succinctly described, requiring only n + 1 per-
mutations on the n players, and exist in the most general setting possible. The
Theorem above follows from the result below which gives an explicit character-
ization of the set GM (P) of achievable allocations in the most general setting
using permutation schemes.

Theorem 4. For any arbitrary distribution on players P, the convex set GM (P)
is the convex hull of the goal vectors g(π) of permutation schemes.

This result is based on a non-trivial connection between the allocations achiev-
able by convex combination of permutation schemes and weight-based schemes.
Apriori, it is unclear why such schemes exist even for product distributions.

Finally, we give an efficient algorithm to checking whether some given g is
achievable, and obtain the corresponding allocation rule.

Theorem 5. If the distribution P has the property that the allocation vector
g(π) can be computed6 for any permutation π, then for any vector g there is an
efficient algorithm to test if g ∈ int(G(P )), and to compute the corresponding
CR-scheme.

The Feige-Vondrak setting and Sequential Schemes. While the above
results hold for arbitrary P and g, we now revisit the Feige Vondrak setting,
where P is a product distribution and g = αq is the fair allocation. We give
another very natural scheme that we call the Sequential scheme.

A sequential scheme has a very simple form. We fix an order of players (say
1, . . . , n) and compute numbers γ1, . . . , γn. When S is realized, we go over the

6 It can always be computed efficiently to any desired accuracy ε > 0 using poly(n, 1/ε)
samples from P.
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players sequentially in the fixed order, and give the item to player i in S with
probability γi, unless it is the last player in S, in which case it gets the item
with probability 1.

As the γi are independent of the set S, this gives a succinct scheme with only
n parameters. The following result shows that sequential schemes can achieve
the same allocation as the FV rule. The proof of this result also gives an explicit
expression for the γi as a function of q1, . . . , qn.

Theorem 6. For any product distribution P = 〈q, . . . , qn〉, and for any ordering
of the players, there exists a sequential scheme, that achieves the maximally fair
allocation gi = αqi for all i ∈ [n].

Unfortunately, sequential schemes are not general enough, and we give two ex-
amples which show their limitations in a strong way: (i) there exist non-product
distributions P, for which the fair allocation g is feasible, but no sequential
scheme can achieve it, and (ii) even for P a product distribution, there exist
(non-fair) feasible vectors g, that cannot be achieved by a sequential scheme.

Variance Minimizing Program Another natural question is whether the
FV-scheme in (1), can be viewed more systematically, and obtained as an opti-
mum solution to some natural convex program. We show that this is indeed the
case, and it corresponds to a convex program that minimizes a certain weighted
squared error objective.

However, this convex program also does not seem too useful for more general
settings. In particular, we give examples of (i) general P for which the fair
allocation is feasible, and (ii) where P is a product distribution for g is not the
fair allocation, for which the program does not have a nice structured solution.
Finally, we also consider a general class of such convex programs and show their
solutions can have a form similar to that of (1).

Efficiently computing the max-min fair allocation For general P, while
Theorems 1 and 2 give an efficient test to determine if an allocation vector g is
feasible, they do not give an algorithm for computing the max-min fair allocation.
Despite extensive work on fairness and in particular on computing max-min fair
allocations in both continuous and discrete settings, we are not aware of any
work in our setting.

We show the following result for max-min fair allocation with respect to a
general priority values.

Theorem 7. For any distribution P and for any priority vector V , the max-min
allocation g ∈ GM (P ) can be computed exactly in time poly(n, |supp(P)|) using a
liner program. If an ε additive error is allowed, the time is poly(n, 1/ε). Finally,
an exact computation in poly(n) time is also possible if g(π) can be computed
efficiently for any permutation π.

Our algorithm follows a natural approach of finding and removing the most
critical subset of players and iterating on the residual instance. To do this, we
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extend an LP-based algorithm of Charikar for computing the densest subgraph
in a graph [6], to hypergraphs. For the setting where g(π) can be computed
efficiently for any permutation, we consider a different LP to compute to the
most critical set.

1.3 Preliminaries

We describe some basic properties of the set GM (P) of maximal achievable goal
vectors, that will be useful later. First, we note that GM (P) is a convex set for an
underlying distribution over players P. Let g, g′ ∈ GM (P) with corresponding
CR schemes R = {rS,i}S,i and R′ = {r′S,i}S,i. Then for α ∈ [0, 1], the goal

vector g(α) = αg + (1 − α)g′ is also valid, as the CR scheme R(α) with r
(α)
S,i =

αrS,i + (1− α)r′S,i gives that for any i ∈ [n],

g
(α)
i = αgi + (1− α)g′i = α

∑
S

pS rS,i + (1− α)
∑
S

pS r
′
S,i =

∑
S

pS r
(α)
S,i .

The following gives a test to check whether a given allocation vector g is fea-
sible or not. While the test is not efficient as it checks for exponentially many
inequalities, it will be useful for our proofs later. For S ⊆ [n], let E(S) = {T ⊆
[n] : T ∩ S 6= ∅} be the collection of sets with non-empty intersection with S.

Lemma 1. g ∈ G(P) iff for all S ⊆ [n], P (E(S)) ≥
∑
i∈S gi, where P (E(S)) =∑

T∈E(S) pT .

Proof. For a goal vector g, consider the flow network F (P, g) = (V,E), with
vertices V = {s}∪ supp(P)∪ [n]∪{t}, and edges E = E1∪E2∪E3 with capacity
function c, where E1 = {(s, S) : S ∈ supp(P)}, c(s, S) = pS , E2 = {(i, t) : i ∈
[n]}, c(i, t) = gi and E3 = {(S, i) : i ∈ S}, c(S, i) =∞.

We claim that g is achievable iff there exists an s-t flow of value
∑
i∈N [n] gi.

Indeed, given a CR scheme given by rS,i that achieves g, the flow f with f(s, S) =∑
i∈S rS,ipS for S ∈ supp(P), f(S, i) = rS,ipS for i ∈ S, and f(i, t) = gi for

i ∈ [n], is feasible and has value
∑
i∈N gi. Conversely, given a flow f with value∑

i gi, setting rS,i = f(S, i)/pS would achieve g.
Applying max-flow min-cut theorem to this network directly gives the result.

2 Weight-based schemes

Recall that in a weight based scheme, rS,i = wi/(
∑
j∈S wj), for each set S and

each i ∈ S.
We now prove Theorems 1 and 2. For clarity of exposition, we first focus

on showing the existence of weights and assume that P is given explicitly. The
algorithmic version follows from known results for max-entropy convex programs
and matrix scaling, and standard ideas based on sampling that are described in
Section 2.3.
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2.1 Convex Programming based Algorithm

Consider the following convex program with variables xS,i ≥ 0 for the probability
that player i ∈ S receives the item on outcome S.

max
∑
S,i

xS,i ln
e

xS,i

s.t.
∑
S:i∈S

xS,i = gi ∀i ∈ [n] (2)∑
i∈S

xS,i = pS ∀S ∈ supp(P) (3)

xS,i ≥ 0 ∀S ∈ supp(P), i ∈ S (4)

As g ∈ int(GM ), gi > 0 for each i, and as the objective function is strictly
convex, the optimum solution x∗ to the program satisfies x∗S,i > 0 for all i, S. As

g ∈ int(GM ), the program is feasible and also satisfies Slater’s condition [5], and
by strong duality there is a tight dual solution with the same objective value.

Dual Let us consider the dual. It has variables βi ∈ R for each i ∈ [n] for the
constraints (2), and αS ∈ R for each S ∈ supp(P) for the constraints (3). Writing
the objective as

∑
S,i xS,i(1− lnxs,i), its partial derivative with respect to xS,i is

(1−lnxS,i)−1 = − lnxS,i. As x∗S,i > 0 in the primal, by complementary slackness
the dual variables for constraints (4) have value 0 and the KKT conditions give
that,

βi − αS = lnxS,i ∀S, i. (5)

Or equivalently, xS,i = eβi/eαS . For a fixed S, summing up (5) over i ∈ S
and using

∑
i∈S xi,S = pS gives

∑
i∈S e

βi = eαSpS and hence

xS,i = pSe
βi/(

∑
i∈S

eβi).

As rS,i = xS,i/pS , this gives that rS,i has the form wi/(
∑
i∈S wi) for each s, i

with wi = eβi .

Running time and accuracy The condition g ∈ int(GM ) ensures that g
has distance at least ε from GM for some ε > 0. The arguments in [24] on
the bit-length of solutions for max-entropy convex programs, imply that the bit
length of wi depends as O(log 1/ε) on ε and the convex program runs in time
polynomial in n, supp(P) and log(1/ε).

2.2 Matrix Scaling based Algorithm

We now show how to obtain Theorem 1 using matrix scaling. We begin by briefly
describing the relevant background on matrix scaling.

Let A be a given m×n matrix with non-negative entries, and let r ∈ (R+)m

and c ∈ (R+)n be positive vectors satisfying
∑
i∈[m] ri =

∑
j∈[n] cj .
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Definition 1 ((r, c)-scalable). A non-negative matrix A is said to be (r, c)-
scalable, if there exists non-negative vectors x ∈ Rm and y ∈ Rn such that
B = Diag(x)ADiag(y) with entries bij = xiaijyj has row sums r and column
sums c. That is,

∑
j bij = ri for i ∈ [m] and

∑
i bij = cj for j ∈ [n].

Given an ε > 0, we say that A is ε-(r, c) scalable if there is some scaling of A
with row sums (exactly) r, and columns sums c′ satisfying

∑n
j=1(c′j − cj)2 ≤ ε.

We say that A is almost (r, c)-scalable if it is ε-(r, c) scalable for any ε > 0.
The following proposition from [23] exactly characterizes approximate scala-

bility for a matrix.

Proposition 1. A non-negative matrix A is almost (r, c)-scalable iff for every
zero minor Z ×L of A (i.e., a submatrix of A with all zero entries), the vectors
r and c satisfy

∑
i∈[n]\Z ri ≥

∑
j∈L cj.

Relation to weight-based CR schemes We now relate matrix scaling to
contention resolution.

Given P, let A be a |supp(P)| × n, incidence matrix for the support of P,
defined as AS,i = 1 if i ∈ S and 0 otherwise. The key observation is the following.

Lemma 2. Let g ∈ GM (P), and suppose there exist vectors x and y such that
the matrix diag(x)A diag(y) has row sums pS for each S and column sums gj
for each j. Then the vector y gives the weights for a weight-based CR scheme
that achieves g.

Proof. By the definition of A, and the properties of the scaling, the sum for row
S satisfies

pS =
∑
j∈[n]

xSAS,jyj =
∑
j∈S

xSyj ,

and hence xS = pS/(
∑
j∈S yj). Similarly, the sum for each column j satisfies

gj =
∑
S

xSAS,jyj =
∑
S:j∈S

xSyj =
∑
S:j∈S

pS
yj∑
j∈S yj

.

So setting rS,j = yj/(
∑
j∈S yj) achieves gj =

∑
S pSrS,j and

∑
j∈S rS,j = 1 for

all S, giving the claimed weight-based scheme.

Interestingly, the condition for the existence of the scaling of A in Lemma
2, turns out to be identical to the condition for feasibility of a goal vector g ∈
GM (P) as in Lemma 1.

Lemma 3. For any P, the incidence matrix A is almost (pS , g)-scalable iff g ∈
GM .

Proof. We will show that the condition in Proposition 1 holds for each zero
minor Z × L of A. Fix some L ⊂ [n]. Then it suffices to consider the maximal
Z×L minor of A, which corresponds to Z = [n]\E(L), the collection all subsets
disjoint from L.
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For r = {pS}S and c = g, the condition
∑
i∈[n]\Z ri ≥

∑
j∈L cj thus becomes∑

T∈E(L) pT ≥
∑
i∈L gi, which holds by Lemma 1 for every L ⊆ [n] iff g is

achievable.

It is also known that if A is almost (r, c)-scalable, then an ε-(r, c) scaling can
be found after poly(n, log(1/ε)) iterations [9], which gives the claimed running
time.

2.3 Handling g at the boundary and Sampling

Interestingly, the matrix-scaling based algorithm is quite robust and works even
if g lies at the boundary of GM (P). In particular, as the algorithm iteratively
computes some row and column scaling x and y, using y as weights at any
intermediate step gives some valid and achievable allocation. More precisely,
the weights y after poly(n, log 1/ε) iterations will correspond to a goal vector ĝ
with ‖g− ĝ‖2 ≤ ε [9], even for g on the boundary of GM . The algorithms above
assumed access to the entire distribution P. This can be removed using standard
arguments that we now sketch. Let qi be the marginal probability of player i in
P. By standard tail bounds, for any P, each qi can be estimated to within ±ε
error with high probability, using O((log n)/ε2) independent samples from P.

Suppose g is achievable for P by some CR scheme R given by rS,i, i.e., gi =∑
S pS rS,i. Take m = O(log n/ε2) samples Ŝ from P, and consider the (empiri-

cal) allocation ĝi = 1
m

∑
Ŝ rŜ,i obtained by R on these samples. As 0 ≤ rS.i ≤ 1,

and as |pi−
∑
Ŝ 1(i ∈ Ŝ)/m| ≤ ε for all i, this gives that ‖ĝ−g‖∞ ≤ ε with high

probability. As ĝ is achievable for the sampled distribution Ŝ, running the convex
program in proof of Theorem 1 on Ŝ with goal g (and by using an additional
error term ε in (2)) will find some g̃, with ‖g− g̃‖∞ ≤ ‖g− ĝ‖∞ + ‖ĝ− g̃‖ ≤ 2ε.
In particular, this implies the following.

Theorem 8. There are efficient algorithms, using only sampling access to P,
that given g, find an achievable ĝ satisfying ‖g − ĝ‖ ≤ ε or certify that no such
ĝ exists and run in time poly(n, 1/ε).

3 Permutation Schemes and Achievable Goal Vectors

Recall that a given a permutation π of the players, the corresponding permu-
tation scheme allocates the item to i ∈ S appearing earliest in the ordering π,
i.e., for every S 6= ∅, rπS,i = 1 for i = arg min{π(j) : j ∈ S}, and rS,j(π) = 0
otherwise.

Let Πn denote the set of all n! permutations on [n]. Given a distribution P
on subsets of n players, and a permutation π ∈ Πn, let g(π,P) denote allocation
vector achieved by the permutation scheme given by π.

Theorem 9. For any P, any maximal achievable allocation g ∈ int(GM (P)) is
a convex combination of g(π,P) for π ∈ Πn. Equivalently, the closure of GM (P)
is the convex hull of the vectors g(π,P).
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Proof. As all quantities depend on P, we drop it to simplify notation. Fix some
g ∈ int(GM ). It suffices to show that g is some convex combination of g(π) for
permutations π in Πn, i.e., g =

∑
π∈Sn

α(π) g(π) with
∑
π∈Sn

α(π) = 1 and
α(π) ≥ 0 for all π.

As g ∈ int(GM ), by Theorem 1, g can be achieved by a weight-based scheme
given by some weight vector w, i.e., gi =

∑
i3S pS wi/(

∑
j∈S wj) for all i ∈ [n].

We define α(π) using w as follows. Equip each player i with an independent
exponentially distributed random variable Xi with rate λi = wi (i.e., with mean
1/wi). For each instantiation of these variables, let π be the ordering of the play-
ers in the increasing of their Xi values i.e., Xπ−1(1) < Xπ−1(2) < . . . < Xπ−1(n)

(we ignore ties, as this is a measure zero event). Let απ denote the probability
for the permutations π ∈ Πn, and let α denote the resulting distribution on the
permutations.

By the memoryless property of exponential random variables, for any set S
of players, the probability that player i has minimum Xi value among all the Xj

for j ∈ S is exactly wi/
∑
j∈S wj . In other words,

Prπ∼α[arg min{π(j) : j ∈ S} = i] =
wi∑
j∈S wj

.

This implies that choosing π according to the distribution α and applying the
permutation scheme based on π exactly achieves the goal g.

While the proof may use g exponentially many permutations to write g as
a convex combination, as g ∈ Rn, by Caratheodory’s theorem at most n + 1
vectors g(π) always suffice.

Tightness. We remark that there exist distributions P for which each of the n!
permutations π actually corresponds to a unique extreme point g(π) of GM (P).
Consider the product distribution P with marginals q1 = . . . = qn = 1/2. For
any permutation π, the player π−1(k), which is at position k in the ordering,
gets the item with probability exactly 2−k. So g(π) = (2−π(1), . . . 2−π(n)).

For any π, we claim that g(π) cannot be expressed as a convex combination
of other g(π′). Without loss of generality, suppose π is the identity permutation.
Then, as g(1) = 1/2 and the marginal q1 = 1/2, every permutation π′ in the
support of the convex combination must have 1 as its first element. Conditioning
out the element 1, and applying the argument repeatedly gives that the only
permutation in the support of g(π) is (1, 2, . . . , n).

3.1 Alternate Feasibility Test

The characterization above gives another useful test for testing if g is feasible,
provided the distribution P has the property that the goal vector g(π) can
be efficiently computed for any permutation π. This is true for most natural
distributions, or in general g(π) can be computed efficiently to desired accuracy
by sampling. E.g., for the product distribution P = 〈q1, . . . , qn〉, we have the
have the explicit expression gk(π) = qk

∏
j:π(j)<π(k)(1− qj).
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Theorem 10. If P has the property that g(π) can be computed for any permu-
tation π, then for any g there is an efficient algorithm to test if g ∈ int(GM (P )).
The algorithm also computes a corresponding CR scheme.

The proof is based on linear programming. Given a goal vector g, consider the
following LP with (exponentially many) variables xπ for each permutation π ∈
Πn.

min
∑
π∈Πn

xπ s.t.
∑
π∈Πn

xπgi(π) ≥ gi, ∀i ∈ [n], xπ ≥ 0, ∀π ∈ Πn.

Then g is achievable iff the objective
∑
π∈Πn

xπ ≤ 1. As this LP has exponen-
tially many variables, let us consider the following dual with variables yi for
i ∈ [n].

max
∑
i∈[n]

gi yi s.t.
∑
i∈[n]

yi gi(π) ≤ 1, ∀π ∈ Πn, yi ≥ 0, ∀i ∈ [n].

While the dual has exponentially many constraints, it can be solved efficiently
using a separation oracle. Recall that for the separation oracle, given a candidate
feasible solution y we need to find some permutation π such that

∑
i∈[n] yi gi(π) >

1, provided such a permutation exists. The following shows that the such a per-
mutation π is easily obtained by sorting the coordinates of y.

Claim 4 Given y, let σ be the permutation such that yσ(1) ≥ . . . ≥ yσ(n). Then
for any P, the quantity

∑
i yigi(π) is maximized for π = σ−1. That is σ−1 =

arg maxπ(
∑
i∈[n] yigi(π)).

Proof. Let π be some permutation that maximizes
∑
i∈[n] yi gi(π) and

∑
i∈[n] yi gi(π) >∑

i∈[n] yi gi(σ
−1). Then π−1(k) is the index of player that appears at position k

in the ordering π. Suppose for the sake of contradiction that yπ−1(k) < yπ−1(k+1).
Then, consider the ordering obtained by swapping the players at positions k and
k+ 1, i.e. π′(π−1(k)) = k+ 1 and π′(π−1(k+ 1)) = k and π′(i) = π(i) otherwise.
We will show that (

∑
i∈[n] yigi(π

′)) is not smaller than (
∑
i∈[n] yigi(π)), giving

the desired contradiction. Let

S̃ = {S ⊆ N : π−1(k), π−1(k + 1) ∈ S, k = min
i
{π(i) : i ∈ S}}

be the collection of sets containing both π−1(k), π−1(k+1) and where the player
π−1(k) is the earliest player in S according to the ordering in π.

The crucial observation is that for any S and i ∈ S, we have rS,i(π) =

rS,i(π
′), unless S ∈ S̃ and i ∈ {π−1(k), π−1(k + 1)}. Moreover, in this case,

rS,π−1(k)(π) = 1, rS,π−1(k+1)(π) = 0, and rS,π−1(k)(π
′) = 0, rS,π−1(k+1)(π

′) = 1.
This gives that∑

i∈[n]

yigi(π
′)−

∑
i∈[n]

yigi(π) =
∑
S∈S̃

pS · (yπ−1(k+1) − yπ−1(k))

which is non-negative by our assumption.
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4 Sequential schemes for the FV setting

Recall that a sequential scheme has the following form. There is some fixed order
π on the players, and we compute γi ∈ [0, 1] for each i. When S is realized, we go
over the players in the order given by π, and give item to i ∈ S with probability
γi, unless i is the last player in S, in which it gets the item with probability 1.

Clearly, this scheme is maximal. We show that it can achieve the same allo-
cation as the FV scheme for any production distribution and for any order on
players π.

Theorem 11. For any product distribution P = 〈q1, . . . , qn〉, and for any order-
ing π of the players, there exists a sequential scheme, that achieves the maximal
fair allocation. Moreover, the γi are explicitly given as γi = (αi − Ri+1)/(1 −
Ri+1), where Rk =

∏
i≥k(1− qi), αk = (1−Rk)/Qk and Qk =

∑
i≥k qi.

Proof. Without loss of generality, we can assume π is the identity permutation,
and the players are considered in the order 1, . . . , n. Also, given the definition
of αk and Rk, the fairness factor α = (1 −

∏n
i=1(1 − qi))/(

∑n
i=1 qi) is simply

(1− R1)/Q1 = α1. We will show that the desired g = αq is attained by setting
γk = (αk −Rk+1)/(1−Rk+1) for k ∈ [n].

We first show that γk are well-defined probabilities. Let us recall the Weier-
strass’ product inequalities.

Fact 5 Let a1, ..., an ∈ [0, 1] and S =
∑
i ai. Then

∏
i(1 − ai) ≥ 1 − S and∏

i(1 + ai) ≥ 1 + S.

As αk ≤ 1, we clearly have γk ≤ 1. To show that γk ≥ 0, note that the denomi-
nator is non-negative, and the numerator satisfies

αk −Rk+1 =
1−Rk
Qk

−Rk+1 =
1

Qk

(
1− (1− qk)Rk+1 −QkRk+1

)
=

1

Qk
(1− (1 +Qk+1)Rk+1) ≥ 0,

where the second equality uses that Rk = (1 − qk)Rk+1 and the third equality
uses that Qk − qk = Qk+1. The inequality follows, as by Fact 5, 1 + Qk+1 ≤∏
i≥k+1(1 + qi), and hence (1 +Qk+1)Rk+1 ≤

∏
i≥k+1(1− q2i ) ≤ 1.

For i ∈ [n], let p(i) denote the product distribution 〈qi, . . . , qn〉 on i, . . . , n.

That is, for a set T ⊆ [i, n], p
(i)
T =

∏
j∈T qj

∏
j≥i,j /∈T (1− qj).

Given γ1, . . . , γn, we define p̃
(i)
T for i ∈ [n], T ⊆ [i, n], T 6= ∅, as the probability

that each player in T requested the item and that the item is not allocated to
any of the players in [1, i− 1] in the sequential scheme.

Claim. For any non-empty subset T of {i, . . . , n}, it holds that p̃
(i)
T = (α1/αi)p

(i)
T .

Proof. We first note that p̃
(i)
T =

∏i−1
j=1

(
(1 − qj) + qj(1 − γj)

)
p
(i)
T =

∏i−1
j=1(1 −

qjγj)p
(i)
T .
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This follows as the set T is ‘left over’ at step i, if and only if, for each player
j ∈ {1, . . . , i− 1}, either it did not appear in S or it did not pick the item which
happens with probability 1− γj as T is non-empty and hence j was not the last
player in S.

So it suffices to show that 1− qjγj = αj/αj+1 for each j ∈ {1, . . . , i− 1}. To
this end, we have

1− qjγj = 1− qj(αj −Rj+1)

1−Rj+1
=

1−Rj+1 − qjαj + qjRj+1

1−Rj+1

=
1−Rj − qjαj

1−Rj+1
=
αj(Qj − qj)

1−Rj+1
=

αjQj+1

1−Rj+1
=

αj
αj+1

,

where the third equality uses that Rj = (1−qj)Rj+1, and the fourth (resp. sixth)
that 1−Rj = αjQj (resp. 1−Rj+1 = αj+1Qj+1).

We can express probability of player i getting the item as follows.

Claim. The probability the player i gets the item in the sequential scheme is

gi = p̃
(i)
{i} + γi

∑
T⊆{i,...,n},i∈T,T 6={i}

p̃
(i)
T .

Proof. Consider the set of players T left after the first i − 1 steps. Then either
player i gets the item with probability 1 if T = {i}, otherwise it gets it with
probability γi if i ∈ T and j ∈ T for some j > i.

Noting that p
(i)
{i} = qiRi+1 and that

∑
T⊆{i,...,n},i∈T,T 6={i} p

(i)
T = qi(1−Ri+1), by

Claim 4 and Claim 4,

gk =
α1

αk
· (qkRk+1 + γkqk(1−Rk+1)) =

α1

αk
· (qkRk+1 + qk(αk −Rk+1)) = α1qk.

Noting that α1 = α gives the desired result.

4.1 Limitations

Unfortunately, sequential schemes are not general enough to work for arbitrary
P, or even when P is a product distribution but g is arbitrary. For n = 3,
there exists a general distribution (Pr[A = {1}] = Pr[A = {1, 2, 3}] = 0.34,
Pr[A = {2}] = Pr[A = {1, 2}] = 0.16) such that a fair allocation that is achiev-
able, but it is not achievable by a sequential scheme (for the order 1, 2, 3). In addi-
tion, there exists a product distribution and achievable vector (P = 〈0.4, 0.1, 0.2〉,
g = (0.356, 0.077, 0.135)) which cannot be achieved by a sequential scheme (for
the order 1, 2, 3). Understanding the class of allocations g, and the class of dis-
tributions P for which such schemes work might be an interesting question for
further investigation.
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5 Convex Program for the FV Scheme

Recall that the FV scheme considers the product distribution P = 〈q1, . . . , qn〉
with g = αq where α = (1−

∏
i(1−qi))/(

∑
i qi). Consider the following program

with variables rS,i, that tries to finds a rule rS,i to minimize the (weighted)
quadratic variation about 1/|S|, while satisfying the global constraints.

min
r

∑
i∈S

(|S| − 1) pS

(
rS,i −

1

|S|

)2

s.t.
∑
S3i

pS rS,i = α qi ∀i ∈ [n] (6)∑
i∈S

rS,i = 1 ∀S (7)

rS,i ≥ 0 ∀S,∀i ∈ S (8)

Theorem 12. For product distributions, the optimum solution to the program
above is the FV scheme (1).

Proof. We first note that after rearranging the terms, the FV scheme can be
written as

rS,i =
1

|S|
+

(qS − qi)
(|S| − 1)(

∑n
i=1 qi)

for|S| > 1, i ∈ S (9)

where qS =
∑
i∈S qi/|S|. Moreover, rS,i = 1 for |S| = 1.

We wish to show that this is the optimum solution to the convex program.
To do this, we construct a feasible dual solution and show that the primal-dual
pair satisfies the KKT conditions, and use strong duality for convex programs
(and that Slater’s condition is satisfied).

Let us define the dual variables βi ∈ R for i ∈ [n] for constraints (6), γS ∈ R
for all S in (7), and δS,i ≥ 0 for (8). The complementary slackness conditions
for (8) give rs,iδi,S = 0. Taking the Lagrangian and the partial derivatives with
respect to rS,i gives the condition

2(|S| − 1) pS · (rS,i − 1/|S|)− γS − βi pS − δi,S = 0 ∀S, ∀i ∈ S. (10)

Consider the following dual solution:

βi = −2qi/(

n∑
i=1

qi), γS = (
∑
i∈S

βi) pS/|S| = −2q pS/(

n∑
i=1

qi) and δS,i = 0.

We show that this primal-dual pair satisfies the KKT conditions. First, rs,iδi,S =
0 holds trivially as δS,i = 0. So (10) becomes

2(|S| − 1) pS · (rS,i − 1/|S|)− γS − βi pS = 0. (11)

For S with |S| = 1, this holds easily as the first term above becomes 0, and our
choice satisfies γS = −βipS for S = {i}.
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For S with |S| > 1, plugging the values of γS and βi, cancelling pS and
re-arranging, (11) simplifies to

rS,i =
1

S
+

1

2(|S| − 1)
(βi − γS) =

(qS − qi)
(|S| − 1)(

∑n
i=1 qi)

,

which exactly corresponds to the FV scheme. The primal feasibility of rS,i follows
from the (somewhat tedious) calculations in [11], which show that rS,i is a valid
and maximally fair scheme.

6 Extending the Variance Minimization Program

More generally, for any distribution P and any goal vector g, one can consider a
more general family of convex programs with arbitrary weights wS for set S in
the objective (the program for the FV scheme has wS = |S| − 1).

min
∑
i∈S

wS pS (rS,i−1/|S|)2 s.t.
∑
S3i

pS ·rS,i = gi,∀i;
∑
i∈S

rS,i = 1,∀S.

Suppose there is some natural choice of weights wS (possibly depending of P, g),
so that the constraints rS,i ≥ 0 were automatically satisfied by the optimum
solution to this convex program. Then, we claim that the resulting CR rule
given by rS,i has a very succinct representation, similar to FV scheme.
Dual. As before, consider the dual of this program with dual variables βi, γS ∈
R. Then taking the Lagrangian and partial derivatives, gives the KKT conditions:

2wS pS (rS,i −
1

|S|
)− γS − βi pS = 0,∀S, i.

For a fixed S, summing this up over all i ∈ S and using that
∑
i∈S rS,i = 1,

the first term becomes 0 and we get γS = −
∑
i∈S βipS/|S|. Let us denote

βS =
∑
i∈S βi/|S|. Then, this gives that

rS,i =
1

|S|
+
βi − βS

2wS
. (12)

Let us call a CR scheme a β-scheme, if there is some natural choice of weights
wS , such that the optimum solution to the convex program has the form above.
By our discussions above, the FV scheme is a β-scheme for wS = |S| − 1 with
βi = −2qi/(

∑n
i=1 qi). It is an interesting question to explore if β-schemes exists

for more general distributions or even for more general allocation vectors and
product distributions. The following two examples show that this is not true for
the choice wS = |S| − 1, that worked for the FV scheme.
Computing β efficiently. We remark that if a β-scheme exists, for some choice
of wS , then given any goal vector g, the corresponding βi(g) can be computed
in time polynomial in n, assuming suitable access to P. In particular, as gi =
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S3i rS,i pS , and rS,i is given by (12), g is linear in β and hence g = Jβ + v0

where v0 is some affine shift and J is the n × n Jacobian matrix with entries
Jij = ∂gi/∂βj . Suppose J (the entries of which only depend on P) and wS can
be computed explicitly, and that the goal vector g(0) for β = 0 (that has entries
gi(0) =

∑
S3i pS/|S|) can be computed. Then β(g) = J+(g− g(0)), where J+ is

the pseudoinverse of J .
Limitations. For n = 3, there exists a general distribution (Pr[{1}] = 0.55,
Pr[{3}] = 0.2, Pr[{1, 3}] = 0.05, Pr[{1, 2, 3}] = 0.25) such that a a fair allocation
is achievable, but is not achievable using a β-scheme with the choice of weights
wS = |S| − 1. And there exists a product distributions and an achievable goal
vector g ( P = 〈0.28, 0.59, 0.52〉, and g = (0.25437, 0.29448, 0.309446)) which
cannot be achieved using a β-scheme with the choice of weights wS = |S| − 1.

7 Computing the Max-min Allocation

Recall that given P, V our goal is to compute a feasible g ∈ G(P), such that for
any g′ ∈ G(P) we have g �V g′. In other words, the vector αV (g) with entries
gi/vi satisfies that αV (g)↑ is lexicographically the largest among all other feasible
allocations g′.

For any set S, the maximum probability that the item is allocated to players
in S is

∑
T :T∩S 6=∅ pT . So by averaging, under any allocaton g, some player i ∈

S always has αVi (g) ≤ (
∑
T :T∩S 6=∅ pT )/(

∑
i∈S vi). The algorithm proceeds by

finding the set S will the smallest such value, called the critical value, and ensures
that gi/vi equals this value for players in S. It then iterates on the residual
instance. Below, we show that the critical probabilities can only increase, and
that the resulting allocation in the fairest with respect to V . Later we show how
to compute the critical set S.

We omit the superscript V in αV for convenience, whenever it is clear from the
context. For S ⊆ [n], let V (S) =

∑
i∈S vi and let EA(S) = {T ⊆ A, T ∩ S 6= ∅}

be the collection of subsets of A intersecting S. For a collection of sets S, let
P (S) =

∑
S∈S pS . Consider the following algorithm.

Algorithm ComputeFair(P, V ) :

1. Init: A1 ← [n], k ← 1
2. while Ak 6= ∅

(a) Sk ← arg minS⊆Ak

{
P (EAk (S))

V (S)

}
, αk ← P (EAk (Sk))

V (Sk)

(b) gi ← vi · αk, for i ∈ Sk, Ak+1 ← Ak \ Sk, k ← k + 1

Theorem 13. For any distribution P and for any priority vector V , the fairest
allocation g ∈ G(P ) can be computed exactly in time poly(n, |supp(P)|) using a
liner program. If an ε additive error is allowed, the running time is poly(n, 1/ε).
An exact computation in poly(n) time is also possible if g(π) can be computed
efficiently for any permutation π.
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First, we prove the correctness of the algorithm, let K be the number of
iterations. The following simple claim shows that αi can only increase over the
iterations.

Claim. For all i ∈ [1,K − 1], αi ≤ αi+1.

Proof. For the sake of contradiction, suppose that αi > αi+1 for some i ∈ [K−1].
Then for S′ = Si ∪ Si+1,

P (EAi(S′))

V (S′)
=
P (EAi(Si)) + P (EAi+1(Si+1))

V (Si) + V (Si+1)
<
P (EAi(Si))

V (Si)
= αi,

where the first equality follows from EAi(Si) ∩ EAi+1(Si+1) = ∅, and the in-
equality follows from a+x

b+y <
a
b if x

y <
a
b , for a, b, x, y > 0. This contradicts that

Si is the critical subset at step i.

Next, we prove that the output of ComputeFair(P, V ) is achievable.

Claim 6 For any distribution P and priority V , the output g of ComputeFair(P, V )
lies in G(P).

Proof (Proof of Claim 6). By Lemma 1, we need to show that for all S we have
P (E(S)) ≥

∑
i∈S gi, where E(S) = {T ⊆ [n] : T ∩ S 6= ∅}. This follows as∑

i∈S
gi =

∑
j∈[K]

∑
i∈S∩Sj

gi =
∑
j∈[K]

∑
i∈S∩Sj

αjvi

≤
∑
j∈[K]

∑
i∈S∩Sj

vi ·
P (EAj (S ∩ Sj))
V (S ∩ Sj)

=
∑
j∈[K]

P (EAj (S ∩ Sj)) ≤ P (E(S)),

where the first inequality follows from the minimality of Sj , and the second
inequality follows from EAj (S ∩ Sj) ∩ EAj′ (S ∩ Sj′) = ∅, for j 6= j′.

Claim 7 For any P and V , let g the output of ComputeFair(P, V ), then g �V
g′ for all g′ ∈ G(P).

Proof. For the sake of contradiction, consider some P,V and g′ ∈ G(P) such that
g′ �V g, with the fewest number of players n. Let r′ be the rule corresponding
to g′, i.e., g′i =

∑
S⊆[n] r

′
S,ipS . Consider the following two cases depending on

the first critical set S1.
Case 1. g′i = gi for all i ∈ S1. In this case, we claim that for all S ∈ E(S1), we
have

∑
i∈S1

r′S,i = 1 as∑
S∈E(S1)

pS ·
∑
i∈S1

r′S,i =
∑
i∈S1

g′i = α1 ·
∑
i∈S1

vi =
∑

S∈E(S1)

pS .

So, for all S ∈ E(S1), we have
∑
i∈S\S1

r′S,i = 0.

Consider the distribution P̂, V̂ on players A2 = [n] \ S1, defined as p̂S = pS
for S ⊆ A2 and v̂i = vi for i ∈ A2. Let ĝ be the output of ComputeFair(P̂, V̂ ),
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and note that by the design of the algorithm ĝi = gi for all i ∈ A2. Moreover,
let g̃ the vector which corresponds to the assignment rule r̃, where r̃S,i = r′S,i,
for S ⊆ A2. Since for all S ∈ E(S1) we have

∑
i∈S\S1

r′S,i = 0, therefore g̃i = g′i
for all i ∈ A2. Hence, g̃ �V̂ ĝ as well, with a smaller number of players, which
contradicts the minimality of P.
Case 2. g′j 6= gj for some j ∈ S1. Suppose g′i < gi for some i ∈ S1, then
as g′i/vi < gi/vi = α1, and as αk are non-decreasing by Claim 7, it follows
that g′i/vi < gr/vr for all r ∈ [n], contradicting that g′ �V g. Thus, we have
g′j > gj = α1 · vj , and g′i ≥ gi = α1 · vi for all i ∈ S1, but this is impossible as

α1·V (S1) = α1·vj+
∑

i∈S1\{j}

α1·vi ≤ α1·vj+
∑

i∈S1\{j}

g′i <
∑
i∈S1

g′i ≤ P (E(S1)) = α1·V (S1).

7.1 Computing the critical subset

We now give an algorithm that given P, computes the critical subset of play-
ers. For clearer exposition, we assume that P is given explicitly and show that
the algorithm runs in poly(n, |supp(P)|). The sampling argument in Section 2
directly gives the ε-approximate version, which runs in time poly(n, 1/ε).

The algorithm is based on a result of Charikar [6] for computing dense sub-
graphs in graphs, but for our setting we need to extend it to hypergraphs and
to handle the weights vi.

Consider the following LP with variables xS for each set S in the support of
P and yi for i ∈ [n].

min
∑
S

pS xS s.t. xS ≥ yi,∀i ∈ S;
∑
i∈[n]

viyi ≥ 1; xS , yi ≥ 0,∀i, S.

(LPα)
Given a solution, let us define T (r) = {i ∈ [n] : yi ≥ r}. The algorithm solves

LPα, and outputs T (r∗) where r∗ = arg minr
P (E(T (r)))
V (T (r)) . Note that it suffices to

only check for r ∈ {y1, . . . , yn}.

Lemma 8. The optimal value for LPα is minT
P (E(T ))
V (T ) . The algorithm also

outputs the critical set T .

Proof. First, note that for any set T , there exists a feasible solution with value
of P (E(T ))/V (T ), by setting yi = 1/V (T ) for all i ∈ T , and xS = 1/V (T ) for
all S ∈ E(T ), and all the other variables to 0. This satisfies all the constraints
and has the claimed objective value.

Given a solution to LPα with value u, we show how to find an integral
solution T with value u. First, we can assume that for all sets S we have xS =
max{yi : i ∈ S}. Consider a set T and a collection of sets S parameterized by
r ≥ 0 as follows: T (r) = {i : yi ≥ r} and S(r) = {S : xS ≥ r}.

We claim that E(T (r)) = S(r) for all r ≥ 0. Fix some r. As xS ≥ yi for all
i ∈ S, if i ∈ T (r), then S ∈ S(r) for all S containing i. This implies that S(r)
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contains E(T (r)). Conversely, as xS = max{yi : i ∈ S}, if S ∈ S(r) then there
exists some i ∈ S such that yi ≥ r and hence i ∈ T (r).

We claim that there exists some r such that P (E(T (r)))
V (T (r)) ≤ u. Indeed if not,

then using
∫∞
0

1{x≥r}dr = x, we have the following contradiction

u =
∑
S

pS xS

∫ ∞
0

( ∑
S∈S(r)

pS

)
dr > u ·

∫ ∞
0

( ∑
i∈T (r)

vi

)
dr = u

(∑
i

viyi

)
≥ u.

7.2 Computing the critical subset using an oracle

One can also compute the critical subset using oracle access to the allocation
vectors g(π) for permutations, using the linear program in Theorem 9, and thus
avoid knowing P exactly. Consider the following LP.

min
∑
π∈Π

xπ s.t.
∑
π∈Π

xπgi(π),∀i ∈ [n]; xπ ≥ 0,∀π ∈ Π.

(LP-Perm-α)
The dual of this LP is the following.

max
∑
i∈[n]

vi · yi s.t.
∑
i∈[n]

yigi(π) ≤ 1,∀π ∈ Π; yi ≥ 0,∀i ∈ [n].

(LP-α-Perm-Dual)
As before, let T (r) = {i ∈ [n] : yi ≥ r}. The algorithm solves LP-α-Perm-

Dual by using a separation oracle as defined in Claim 4, and outputs T (r∗) where

r∗ = arg maxr
V (T (r)

P (E(T (r))) . As previously, it suffices to consider r ∈ {y1, . . . , yn}.

Lemma 9. The optimal value of the LP is maxT
V (T )

P (E(T )) . The algorithm also

outputs the critical set T .

Proof. For any S ⊆ [n] and π ∈ Π, note that
∑
i∈S gi(π) ≤ P (E(S)), as P (E(S))

is the total probability mass of all sets that contain some element of S. Moreover,
for S is a prefix of π,

∑
i∈S gi(π) = P (E(S)).

Let u the optimal value of LP-α-Perm-Dual, and let T = arg maxS(V (S)/P (E(S))).
First we show that v ≥ V (T )/P (E(T )). Setting yi = 1/P (E(T )), for any
π ∈ Π, we have

∑
i∈[n] yigi(π) = (

∑
i∈T gi(π))/P (E(T )) ≤ 1, and the objec-

tive is (
∑
i∈T vi)/P (E(T )) = V (T )/P (E(T )). On the other hand, given a so-

lution y, let πy be order according to non-decreasing values of y (i.e., yπy(i) ≥
yπy(i+1) for all i ∈ [n − 1]). Let S(r) = {i ∈ N : yi ≥ r}, note that S(r)
is a prefix of πy for any r. By the constraint for πy in the dual we have:

1 ≥
∑
i∈[n] yigi(πy) =

∫∞
0

(∑
i∈S(r) gi(πy)

)
dr =

∫∞
0
P (E(S(r)))dr Now, an

r such that V (S(r))/P (E(S(r))) ≥ u exists, otherwise we get the contradiction
that

u =
∑
i∈[n]

vi · yi =

∫ ∞
0

V (S(r))dr < u

∫ ∞
0

P (E(S(r)))dr ≤ u.
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