
Serving in the Dark should be done
Non-Uniformly

Yossi Azar and Ilan Reuven Cohen ?

Blavatnik School of Computer Science, Tel-Aviv University, Israel.

Abstract. We study the following balls and bins stochastic game be-
tween a player and an adversary: there are B bins and a sequence of ball
arrival and extraction events. In an arrival event a ball is stored in an
empty bin chosen by the adversary and discarded if no bin is empty. In
an extraction event, an algorithm selects a bin, clears it, and gains its
content. We are interested in analyzing the gain of an algorithm which
serves in the dark without any feedback at all, i.e., does not see the
sequence, the content of the bins, and even the content of the cleared
bins (i.e. an oblivious algorithm). We compare that gain to the gain of
an optimal, open eyes, strategy that gets the same online sequence. We
name this gain ratio the ”loss of serving in the dark”.
The randomized algorithm that was previously analyzed is choosing a
bin independently and uniformly at random, which resulted in a com-
petitive ratio of about 1.69. We show that although no information is ever
provided to the algorithm, using non-uniform probability distribution re-
duces the competitive ratio. Specifically, we design a 1.55-competitive al-
gorithm and establish a lower bound of 1.5. We also prove a lower bound
of 2 against any deterministic algorithm. This matches the performance
of the round robin 2-competitive strategy. Finally, we present an appli-
cation relating to a prompt mechanism for bounded capacity auctions.

1 Introduction

The behavior of an algorithm inherently depends on its input. In some cases
the input is only partially known to the algorithm (e.g. online algorithms, dis-
tributed algorithms and incentive compatible algorithms) and it may still per-
form well. In extreme cases the input is virtually unknown to the algorithm.
In these cases the algorithm needs to act (almost) independently of the input.
Such algorithms are called oblivious algorithms. Typically, oblivious algorithms
act uniformly at random over their choices. For example, consider a case where
there are m weighted balls and n bins. The algorithm needs to assign the balls
to the bins as to minimize the maximum load over all bins (where the load of a
bin is the sum of weights of balls which are assigned to it). Consider a simple
case where m = n2, n of them are of weight 1 and the others are of weight 0.
Clearly, the optimal solution is 1. An oblivious algorithm does not know the

? Supported in part by the Israel Science Foundation (grant No. 1404/10) and by the
Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11).

weights (it only knows n and m). Clearly any deterministic oblivious algorithm
may encounter a maximum of load of n. Fortunately, using randomization an
algorithm which assigns each ball uniform at random achieves an expected maxi-
mum load of log n/ log logn. In this paper, we consider a problem where the best
previous known oblivious algorithm is to select uniformly at random. Interest-
ingly, we show that using a non-uniform distribution improves the performance.
This problem is called serving in the dark and has an application in prompt
mechanism design for packet scheduling.

The Serving in the dark Game. In this game, there is an arbitrary
sequence of ball arrival events and ball extraction events. On the arrival of a new
ball, the adversary assigns the ball to an unoccupied bin of its choice. The ball
is discarded only if all bins are occupied. On an extraction event the algorithm
chooses one of the bins, clears it, and gains its contents. Once the sequence ends,
all the bins that contain balls are cleared and their content is added to the total
gain. The goal of the algorithm is to maximize the number of cleared balls for
the sequence. If the algorithm can see the content of the bins, at any extraction
step it would choose a bin with a ball, if one exists, thereby maximizing the total
gain. This gain is defined as the optimal gain (note that in such a case, the
adversary’s choices of which bin to assign the ball to are irrelevant). We consider
an algorithm which serves in the dark. Specifically, the algorithm is not aware of
the arrival events and of the content of the bins. Moreover, when the algorithm
clears a bin, it does not see the bin content. Equivalently, the algorithm does not
get any feedback during the sequence (as such, it can also be called an oblivious
algorithm). We can describe any sequence which contains N extractions as a
sequence of N time units X = 〈X1, . . . , XN 〉, where at time j, Xj ≥ 0 balls
arrive and then one extraction event takes place. In this paper we compare the
gain achieved by an algorithm that serves in the dark to the optimal gain on
the worst possible sequence.

The most natural algorithm is the round robin on the bins, which is (2−1/B)-
competitive. We show in this paper that this is the best possible deterministic
algorithm. Hence, in order to improve this bound one needs to use randomization.
The most natural randomized algorithm is to choose a bin independently and
uniformly at random. For such an algorithm, the choices the adversary makes for
the assignment of the balls become irrelevant and the game becomes somewhat
degenerate. For the uniform algorithm, the exact competitive ratio for the worst
sequence has been determined in [4] to be approximately 1.69.

On one hand, it may seem that the best possible strategy for an algorithm
is to choose a bin uniformly at random, since the algorithm does not get any
feedback during the sequence. Hence, if some bin is chosen with a smaller prob-
ability, then the adversary is more likely to put the next ball in that bin. On the
other hand, although no information is provided, the algorithm might want to
choose a bin that has not been examined recently. Here we show that by using
a non-uniform distribution we can substantially improve the competitive ratio
to 1.55 and get relatively close to the lower bound of 1.5 that we establish.

Application: prompt mechanism design for packet scheduling. Con-
sider the basic packet scheduling mechanism in which an online sequence of
packets with arbitrary private values arrives to a network device that can ac-
commodate up to B packets. The device can transmit one packet in each time
step. The goal is to maximize the overall value of the transmitted packets. A
trivial greedy mechanism keeps the B packets with the highest values at any
moment in time, and transmits the packet with the highest value when possible.
This mechanism is optimal, truthful, but not prompt, i.e., the price cannot be
determined at the time of transmission (see [7]). A prompt mechanism can be
designed by using a value-oblivious algorithm. Such algorithms have the prop-
erty that during transmission no preference is given to a packet with a higher
value. We note that value-oblivious algorithms may inspect the values of pack-
ets on their arrival. Therefore, one can assume, without loss of generality, that
any value-oblivious algorithm keeps the B packets with the highest values at
any moment in time. One example of a value-oblivious algorithm is the FIFO
algorithm, which transmits the earliest packet in the buffer. This algorithm is
known to be 2 − 1/B-competitive against the absolute optimum [10]. An al-
gorithm which transmits a packet independently and uniformly at random is
approximately 1.69-competitive [4]. A natural question is whether one can gain
from using a non-uniform distribution. This question can be reduced, by the
zero-one principle [5], to the the Serving in the dark Game described above.

1.1 Our results

In this paper, we provide a time-order based algorithm that uses a non-uniform
distribution over the bins. This algorithm is approximately 1.55-competitive for
the serving in the dark game, which improves the previously known results. Re-
call that the competitive ratio of a randomized algorithm is the worst ratio over
all sequences between the optimal gain and the expected gain of the algorithm.

Theorem 1. There exists a randomized algorithm for serving in the dark which
is (1.55 + o(1))-competitive, where o(1) is a function of B.

We also show a relatively close lower bound for any randomized algorithm
for serving in the dark.

Theorem 2. Any randomized algorithm for serving in the dark is at least 1.5-
competitive.

The lower bound for Theorem 2, and all other missing details and proofs are in
the appendix. In order to prove Theorem 1, we actually prove a more general
theorem, for any time-order based algorithm. A time-order based algorithm is
described by a probability distribution on B ordered bins, where the order is
determined by the last time a bin has been cleared. A probability distribution is
called monotone non-decreasing, if for any two bins, the most recent bin in the
order does not have a higher probability than the least recent bin. We analyze
any monotone time-order based algorithm as follows:

Theorem 3. For any p a monotone non-decreasing and bounded probability dis-

tribution on [0, 1] , let H(x) =
∫ 1

x
p(y)dy. Let f be the solution to the differential

equation f ′(x) = −H(f(x)), with f(0) = 1. The competitive ratio of a block time-

order based algorithm which uses p is maxx≥1

{
x

x−f(x)+f(x−1)−1

}
(1 + o(1)),

where o(1) is a function of B.

In the above theorem f(x) corresponds to the fraction of balls in the bins
starting with B balls followed by xB extractions step with no arrivals.

Application: prompt mechanisms for bounded capacity auctions.
We can use the a serving in the dark algorithm to establish a truthful and
prompt selection mechanism for bounded capacity auctions. A bounded capacity
auction is a single-item periodic auction for bidders that arrive online, in which
the number of participating bidders is bounded, e.g., when the auction room
has a limited size. We can apply the serving in the dark algorithm for designing
a mechanism for packet scheduling. Specifically, we design a truthful prompt
mechanism that is approximately (1.55 + o(1))-competitive.

1.2 Our approach and techniques

An essential component in our approach is to utilize a deterministic fractional
algorithm, which describes in vector form the ’expected’ content of the bins,
since we do not know how to analyze directly the randomized algorithm. The
deterministic fractional algorithm will be used as a proxy for the analysis. We
analyze the gain of this fractional algorithm compared with the gain of the
optimal gain-maximizing strategy. This fractional algorithm is designed in a
natural way to correspond to the randomized algorithm and depends on its
probability density function.

It is important to note that our analysis is significantly more complicated
than the analysis of the uniform distribution case. Specifically, when using the
uniform distribution the state of all the bins can be described by a single num-
ber, the number of balls in the bins. For arbitrary distributions, presenting the
state as a vector is crucial in analyzing the behavior of the algorithm, since dif-
ferent bins are chosen with different probabilities and the probability of choosing
one specific bin changes over time. We carefully examine the arrival events and
the extraction events for this vector. Our techniques enable us to consider any
monotone probability density function for a time-order based algorithm, and
characterize up to one parameter the worst input sequence for a fractional algo-
rithm that uses this distribution.

Next, we compare the randomized algorithm with the fractional one. We
observe that the gain of this algorithm is not the expected gain of the random-
ized algorithm, but rather dominates it. Nevertheless, we still establish that it
is within a 1 + o(1) factor away from the expected gain of the randomized algo-
rithm. For the uniform distribution this was previously done by defining a simple
supermartingale on the Markov process of the difference between the number of
balls in the fractional algorithm and that in the randomized algorithm. Here, we
have to define a chain of separate Markov processes for groups of consecutive
bins. In addition, each Markov process in the chain influences the next one. In
order to deal with this complex process, we design sequence of hybrid algorithms,
each has some randomized part followed by some fractional part. We compare

the fractional algorithm to the randomized algorithm by performing a sequence
of comparisons between a consecutive hybrid algorithms. Finally by combining
the result comparing the fractional algorithm and the optimum algorithm with
the result comparing randomized algorithm to the fractional one enables us to
prove the upper bound.

1.3 Further related work

In the example that we previously considered there are m weighted balls and
n bins. The algorithm needs to assign the balls to the bins to minimize the
maximum load. Sanders [17] considered the case where the size of the balls are
unknown to the algorithm. He analyzed an oblivious algorithm which assigns
each ball uniformly at random to a bin and proved that the worst ratio of
the maximum load to the optimal maximum load is achieved when a subset of
balls have equal size and the rest are 0. Obliviously, this ratio is bounded by
log n/ log log n. As mentioned before any deterministic oblivious algorithm will
achieve a ratio of at least n. Another version of the balls and bins problem is
assigning B balls to B bins, where the goal is to maximize the number of non
empty bins, where the bins may be permuted by an adversary. A simple result
states that if the balls are placed independently and uniformly at random in the
bins, then the expected fraction of full bins is 1 − 1/e. If this procedure could
have been performed under light i.e. the permutation at each step was known,
then one could deterministically place each ball in a different bin, and hence the
fraction of full bins would have been 1.

There are other randomized balls and bins stochastic processes that have been
analyzed using various techniques such as martingales and Azuma’s inequality.
We refer the reader to the papers [9,11,12,2,1,13,14,8] and to the references
therein for a more comprehensive review of the literature.

Another example of an algorithm that behaves oblivious to the input is an
algorithm for scheduling jobs with release times on identical machines in order to
minimize the weighted completion time, introduced by Schulz and Skutella [18].
Their 2-competitive algorithm assigns each job uniformly to a random machine,
independently of the assignment of other jobs, while the order of processing
the jobs on each machine depends on the input. For the flow time Chekuri et
al. [6] showed a constant competitive ratio using the same random oblivious
dispatching with extra resources.

Another problem that can be viewed as serving requests independently of
the input is the well studied oblivious routing [16,15,3]. Here, a graph is given
together with a set of requests to connect pairs of vertices with arbitrary de-
mands. At the preprocessing stage, the graph is given without the requested
pairs. The oblivious routing algorithm determines a route (a flow) between any
two vertices, independently of their demands and the existence of other pairs.
For each request pair, the service is performed using the predetermined flow for
this pair scaled by their demand. This achieves logarithmic approximation with
respect to the optimal solution for the specific pairs and demands.

2 The Model

Given B bins, consider an arbitrary sequence of arrival events and extraction
events.

– Arrival event: a new ball is stored in an unoccupied bin determined by the
adversary. If all the bins are occupied, then the ball is discarded.

– Extraction event: the algorithm chooses one of the bins, clears it, and gains
its content.

The goal of the algorithm is to maximize the number of extracted balls for
the sequence. We assume that all the balls that remain in the bins at the end
of the sequence are extracted (this is not required if the optimal gain is large
enough).

We consider an algorithm which serves in the dark, i.e., without any input
during the whole process (except for the value of B). The algorithm can be
viewed as a probability distribution over all infinite sequences of numbers in the
set {1, . . . , B}. Note that the input sequence is arbitrary and the algorithm does
not know the sequence or does not know when the sequence ends. We assume
that the adversary knows the algorithm, and that at any moment of time it sees
the contents of all bins (even if the algorithm is randomized).

We can describe any sequence which contains N extractions as a sequence
of N time steps X = 〈X1, . . . , XN 〉, where at time step j, Xj ≥ 0 balls arrive
and then one extraction event takes place. For a given algorithm ALG, we set
Gi = 1 if a ball is extracted in extraction step i, and Gi = 0 otherwise. Let Li
be the number of balls in the bins before extraction step i: Li = min{Li−1 +
Xi−Gi−1, B}. Denote by Oi the number of overflown (discarded) balls at arrival
time i. We have Oi = max{Li−1 + Xi − Gi−1 − B, 0}. Using these notations,
let G(X) bet the total gain of ALG on a sequence X. By definition, G(X) =
N∑
i=1

Gi + LN+1 =

N∑
i=1

Xi −
N∑
i=1

Oi. The gain of a randomized algorithm is its

expected gain over all algorithm’s coins tosses.
The open eye optimal gain: We compare the gain achieved by an al-

gorithm that serves in the dark with the optimal gain on the worst possible
sequence. The optimal algorithm can see the contents of the bins at any extrac-
tion step and would always choose a bin with a ball if one exists. By that it
would maximize the total gain (defined as optimal gain). Since the optimal
algorithm (called OPT) sees the content of the bins, the choices of the adversary
are irrelevant. The gain of OPT in each step i is GOPT

i = min{LOPT
i , 1}. We

use the standard measure to compare a general algorithm with the optimal one

(denoted as %): ρ(X) = GOPT(X)
G(X) and % = maxX ρ(X).

3 Deterministic Serving Algorithms

One simple deterministic serving algorithm is to perform a round robin over the
bins, i.e., on an extraction event the algorithm chooses the least recent bin that
it had cleared.

Theorem 4. The round robin serving algorithm is (2− 1/B)-competitive.

The proof is a simpler version of the proof given for FIFO packet schedul-
ing [10]. Next, we give a bound for the competitiveness of any deterministic
serving algorithm.

Theorem 5. Any deterministic serving algorithm is at least (2−1/B)-competitive.

4 Randomized Algorithms and their Analysis

In this section, we design and analyze randomized serving in the dark algorithms.

4.1 Time-Order Based Randomized Algorithms

Let p : [0, 1] → R be a monotone non-decreasing probability density function

(i.e.,
∫ 1

0
p(x)dx = 1). We define a time-order based algorithm, denoted by TOBp,

as follows:

On each extraction event:

– Order the bins according to their last extraction step (latest is first).

– Clear one bin, where the probability to clear the j’th ordered bin is

∫ j/B

(j−1)/B

p(x)dx.

Algorithm 1: Time-Order Based Algorithm TOBp

The algorithm may be described as follows: the bins are ordered in a line of
length B. At each step a position in the line is chosen with a fixed monotone
non-decreasing probability distribution function p on the positions. The ball (if
exists) is extracted from the corresponding bin and then the bin is moved to the
beginning of the line.

4.2 Grouping bins together

In order to use a concentration result for the bins, we generalize the algorithm so
that instead of B ordered bins, we keep b1, . . . , bB/K ordered blocks of volume K
(i.e., with K bins each), for some constant K ≥ 1. We impose no internal order
inside a block of bins. The algorithm, denoted as TOBKp , uses a data structure
of list of B/K blocks, where each block contains K bin indices. On an extraction

event, it chooses a block r with probability qr =
∫Kr/B
K(r−1)/B p(x)dx. Afterwards,

it chooses one of the bins in the block uniformly at random and clear it. Finally,
for each block r′ < r a bin is chosen uniformly at random from it and associate
it to the next ordered block, where the extracted bin is associated to the first
block in the order.

Algorithm TOBK
p on extraction event i:

– Choose block ci with probability Pr[ci = r] = qr =

∫ Kr/B

K(r−1)/B

p(x)dx.

– Choose a bin jr ∈ br from each block r ≤ ci uniformly at random.
– Clear bin jci (from block ci).
– Associate bin jr with block br+1 (for r < ci), associate bin jci with block b1.

Algorithm 2: The Block Time-Order Based Algorithm - TOBKp

Note that the block time-order based algorithm with K = 1 is exactly the
time-order based algorithm introduced above. We introduce the following no-
tation with respect to the K-block time-order based algorithm with monotone
distribution p ,called TOBKp , (we omit K and p if they are clear from the con-
text). Let ci be the block chosen in step i. Let Eri be the indicator of whether
in extraction step i a ball is extracted from block r, i.e., Eri = 1 if r ≤ ci and jr
contains a ball, 0 otherwise. The gain in step i is Gi = Ecii . Clearly, the gain is
equal to 1 if we extracted a ball from the chosen block. Let Lri be the number
of balls in the r’th ordered block before extraction step i. By the definition of
the algorithm, the load of block r after the i’th extraction is Lri +Er−1i −Eri if
r ≤ ci, otherwise it remains Lri .

Fig. 1. The algorithm’s selection in some step i: the selected block is ci, jci contains
a ball therefore Gi = Eci

i = 1. Note also that the algorithm choses a bin from each
block before ci and associates this bin with the next block, and that the algorithm
associates the extracted bin jci with the first block. Specifically, in the above example,
E1

i = 1, E2
i = 0, therefore, the load in the first block decreased by one and the load in

the second block increased by one.

Next, let us consider arrival events. Since the algorithm uses a fixed monotone
non-decreasing distribution over the ordered blocks, it is easy to determine the
optimal strategy of the adversary.

Observation 6 For the block time-order based algorithm, on an arrival event
the adversary assigns a ball in the block with the smallest index that has an empty
bin.

By the above observation, on an arrival event the number of balls in the
minimum index block block whose load is smaller than K increases by one. Note

that for a given sequence X, the load in each block is a random variable. Since a
new ball is stored in the first vacant bin, the block index of this new ball is also
a random variable, which makes the analysis of the algorithm complicated. In
order to circumvent this difficulty, we next introduce a deterministic fractional
algorithm that is close to the randomized one.

4.3 Fractional deterministic algorithms

We define a deterministic algorithm that ‘behaves like’ the expectation of the
TOBKp algorithm. Given an input sequence X, the gain and the current loads of

the blocks in TOBKp are (integer) random variables, since there is randomization

in the extraction events. Alternatively, we define FRCKp algorithm as a deter-
ministic fractional algorithm, where a fractional of a ball is the deterministically
extracted. In each step, the fraction of the balls that is extracted in FRCKp corre-

sponds to the the probability that a ball is extracted in TOBKp given the current
state. Specifically, the load of a block after an extraction event is defined as (we
omit FRC,K, p,X if those are clear from the context)

Lri−1 +
(
Er−1i − Eri

)B/K∑
j=r

qj , (1)

where Eri = Lri /K. The gain in each step is Gi =
∑B/K
r=1 qrEri . The arrival of

balls is defined as for the randomized algorithm. Note that since the load is
fractional, a ball can be split into parts lying in several different blocks.

Fig. 2. The fractional block time-order based algorithm, FRC in which Lj
i , E

j
i , Gi are

fractional numbers. In the example above Er
i = 3/5.

4.4 Analyzing the fractional algorithm versus the optimal algorithm

The analysis consists of two parts. In the first part we characterize the worst
sequence for any distribution p. In the second part we analyze the worst gain
ratio of that sequence. By combining the two parts we bound the maximum gain
ratio using p. The proof is in the appendix.

Theorem 7. Given an arbitrary monotone non-decreasing and bounded proba-

bility density function p, let Hp(x) =
∫ 1

x
p(y)dy. Let f be a function that satisfies

f(0) = 1 and f ′(x) = −Hp(f(x)). The competitive ratio % of the fractional al-

gorithm that uses the function p: %FRC ≤ maxx≥1

{
x

x−f(x)+f(x−1)−1

}
(1 + o(1)).

4.5 Analysis of the randomized algorithm versus the fractional one

In order to compare the fractional algorithm with the randomized one, it is
sufficient to analyze input instances in which the fractional algorithm does not
overflow. The reason is that removing balls which overflow in the fractional algo-
rithm from the sequence, does not decrease the gain of the fractional algorithm
and does not increase the gain of the randomized algorithm. We prove that with
high probability a randomized algorithm with slightly larger volume does not
overflow on such sequences. First, we compare a single fractional block to a single
randomized block:

We define the extraction probability of a block with index i as the prob-
ability that a block with index at least i will be chosen. We define the input
sequence of a block as the sum of: (A) the volume overflown from the previ-
ous block and (B) the volume extracted from the previous block that was not
added to the gain. Additionally, we define the output sequence of a block is
its extracted volume plus its overflown volume. Note that, the load of a block
depends on the block’s input sequence and on its extraction probability.

We prove that any input sequence that does not overflow a fractional block,
does not overflow a ’slightly larger’ randomized block with high probability. A
slightly larger means that we increase the randomized block size as well as in-
crease its extraction probability . We prove that this implies that their output
sequences are close for any input sequence. Finally, we introduce a hybrid al-
gorithm HYBm, in HYBm the first m blocks are randomized and the rest are
fractional. Note that in the HYBm algorithm the input sequence for the block
m+ 1 is a random sequence. We compare a HYBm algorithm to a HYBm+1 al-
gorithm by replacing block m+ 1 (a fractional block) with a randomized block.
Specifically, using coupling on the randomized choices in the first m blocks we
get that the input sequences for the block m+1 are the same. Next, we compare
the output sequence of the block m+1 in HYBm+1 with the deterministic output
(after the coupling) of block m+1 in HYBm. Specifically, given a sequence and a
coupling for which HYBm does not overflow then HYBm+1 with a slightly larger
fractional block does not overflow with high probability. By applying this itera-
tively for m = 0 to B/K, we prove that with high probability the randomized
algorithm will not overflow and deduce the following theorem:

Theorem 8. For any fractional block algorithm FRC there exists a time order
base TOB algorithm such that GTOB(X) ≥ GFRC(X)(1 − o(1)), for any input
sequence X.

Single fractional block versus randomized block Recall that for a frac-
tional or a randomized block, the load in each step depends only on its input
sequence, and its extraction probability as defined above. First, we bound
(with high probability) the difference in the load between a fractional block and
a randomized block for sequences where the fractional block does not overflow.
Let ε

N,∆K
= N3 exp

(
−(∆K)2/8N

)
(we omit N,∆K).

Lemma 1. Let BFRC be a fractional block of size K and extraction probability
QBFRC and BTOB be a randomized block of size K+∆K and extraction probability
QBTOB = QBFRC K+∆K

K . Then for any input sequence X that BFRC does not
overflow,
Pr(∃i ≤ N : |LBFRC

i (X)− LBTOB
i (X)| ≥ ∆K) ≤ N3 exp

(
−(∆K)2/8N

)
= ε.

Next, we examine the output sequence Y of the FRC block compared to out-
put sequence of the TOB block for any input sequence X. The output sequence
is defined as the extracted volume plus the overflow volume, i.e., Yi = Ei +Oi.

Lemma 2. Let BFRC be a fractional block of size K and extraction probability
QBFRC , and let TOB be a randomized block of size K + ∆K and extraction
probability QBTOB = QBFRC K+∆K

K . For any input sequence X we have with

probability of at least 1−ε that −∆K ≤
∑i
j=1

(
Y BTOB
j (X)−Y BFRC

j (X)
)
≤ 3∆K.

The hybrid algorithm We define the hybrid algorithm HYBm in which the
first m blocks are randomized and the rest are fractional. On extraction step i a
block ci is chosen. A randomized block r (r ≤ m) will extract from one of its bins
if r ≤ ci. The extraction from the fractional block is done as in the fractional
algorithm independent of the choice ci. Note that HYB0 is a fractional algorithm
and that HYBB/K is a randomized algorithm. We design HYBm+1 such that
all the blocks except block m + 1 and block B/K are with the same size and
extraction probability as in HYBm. In HYBm+1 we set block m+ 1 to be of size
K +∆K and extraction probability Q · (K +∆K)/K, where K and Q are the
size and extraction probability of block m+ 1 in HYBm. In addition, we set the
last block of HYBm+1 to be of size K̃+4∆K and set its extraction probability to
Q̃ · (K̃+4∆K)/K̃, where K̃ and Q̃ are the size and the extraction probability of
the last block in HYBm. Denote Xm as the (random) input sequence to the block
m. The following observation follows immediately from the above construction
of HYBm+1.

Observation 9 For any input sequence Xm such that HYBm−1(Xm) does not
overflow then HYBm(Xm) has at least 4∆K vacant volume in each step.

Lemma 3. If a sequence X does not overflow HYBm−1 with probability of at
least (1 − ε)m−1 then X does not overflow HYBm with probability of at least
(1− ε)m.

By applying Lemma 3 B/K times we obtain the following

Corollary 1. If a sequence X does not overflow HYB0 then X does not overflow
HYBB/K with probability of at least (1− ε)B/K .

Putting everything together The summary of the proof of Theorem 8 is
in the appendix. By combining Theorem 7 and Theorem 8, we conclude that

ρTOB ≤ maxx≥1

{
x

x−f(x)−1+f(x−1)

}
(1 + o(1)), which completes the proof for

Theorem 3. The specific distribution function to prove Theorem 1 is in the
appendix.

References

1. Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, New York,
second edition, 2000.

2. Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations.
SIAM J. Comput., 29(1):180–200, 1999.

3. Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Räcke. Optimal
oblivious routing in polynomial time. J. Comput. Syst. Sci., 69(3):383–394, 2004.

4. Yossi Azar, Ilan Reuven Cohen, and Iftah Gamzu. The loss of serving in the dark.
In Proceedings 45th Annual ACM Symposium on Theory of Computing, pages 951–
960, 2013.

5. Yossi Azar and Yossi Richter. The zero-one principle for switching networks. In
Proceedings 36th Annual ACM Symposium on Theory of Computing, pages 64–71,
2004.

6. Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. Multi-
processor scheduling to minimize flow time with epsilon resource augmentation.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 363–372, 2004.

7. Richard Cole, Shahar Dobzinski, and Lisa Fleischer. Prompt mechanisms for on-
line auctions. In Proceedings 1st International Symposium on Algorithmic Game
Theory, pages 170–181, 2008.

8. Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

9. Norman L. Johnson and Samuel Kotz. Urn Models and Their Applications. John
Wiley & Sons, 1977.

10. Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch
Schieber, and Maxim Sviridenko. Buffer overflow management in qos switches.
SIAM J. Comput., 33(3):563–583, 2004.

11. Valentin F. Kolchin, Boris A. Sevastyanov, and Vladimir P. Chistyakov. Random
Allocations. John Wiley & Sons, 1978.

12. Colin McDiarmid. Concentration. In Probabilistic Methods for Algorithmic Dis-
crete Mathematics. Springer, 1998.

13. Michael Mitzenmacher, Andréa W. Richa, and Ramesh Sitaraman. The power of
two random choices: A survey of techniques and results. In Handbook of Random-
ized Computing. Springer.

14. Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

15. Harald Räcke. Minimizing congestion in general networks. In 43rd Symposium on
Foundations of Computer Science, pages 43–52. IEEE Computer Society, 2002.

16. Harald Räcke. Optimal hierarchical decompositions for congestion minimization in
networks. In Proceedings 40th Annual ACM Symposium on Theory of Computing,
pages 255–264, 2008.

17. Peter Sanders. On the competitive analysis of randomized static load balancing.
Proceedings of the first Workshop on Randomized Parallel Algorithms, RANDOM,
1996.

18. Andreas S. Schulz and Martin Skutella. Scheduling unrelated machines by ran-
domized rounding. SIAM J. Discrete Math., 15(4):450–469, 2002.

Appendix

A Proof of Theorem 7

As mentioned, the analysis consists of two parts. In the first part we characterize
the worst sequence for any distribution p. In the second part we analyze the worst
gain ratio of that sequence. The proofs are in Appendix B

Characterization of the worst gain ratio sequence In the following subsec-
tion, we characterize the worst gain ratio sequence for the fractional algorithm
FRC. Although the worst gain ratio sequence depends on p, we found some
properties that are independent of p for such sequences which allow us to char-
acterize the sequences in terms of only one parameter, namely, the number of
steps between two consecutive overflow steps. The characterization has three
parts. First, we show that it is sufficient to consider compact sequences, defined
by the property that the optimal algorithm clears a ball in each step and does
not have an overflow. Second, we prove that in the steps where the fractional
algorithm overflows, the optimal algorithm bins are full. Finally, we describe
exactly the sequence between two overflow steps in terms of the number of steps
between them.

Compact sequences of balls We will prove that it is sufficient to consider
compact sequences of balls, for which the optimal strategy has no overflow, nor
underflow. An overflow is a situation in which OPT cannot store all arriving
balls in the bins and therefore has to discard some of them, while an underflow
is an extraction step in which there are no balls in the OPT’s bins to be cleared.

Lemma 4. Given any sequence of balls X = 〈X1, . . . , XN 〉, there is a compact
sequence of balls X ′ = 〈X ′1, . . . , X ′N ′〉 for which the optimal strategy does not have
an overflow or an a underflow, and for any TOB it holds that ρ(X ′) ≥ ρ(X).

Overflow steps Next, we prove that it is sufficient to consider sequences where
in the steps where the fractional algorithm overflows, the optimal algorithm bins
are full.

Lemma 5. Given a compact sequence of balls X with a maximum gain ratio ρ,
we can assume that if Li(X) = B then LOPT

i (X) = B.

Corollary 2. Given a compact sequence of balls X with a maximum gain ratio
ρ(X), we can assume for all i that if LOPT

i (X) < B, then Li(X) < B and thus
Oi(X) = 0.

Let T = {T1, . . . , Tk} be the steps at which the optimal load is full. From Corol-
lary 2 it follows that these are the only possivle overflow steps in the sequence.
Note that the number of balls that arrive between two overflow steps is exactly
the number of steps between them.

The sequence between two consecutive overflows We next characterize
the steps between two consecutive overflows (called inner steps). Obviously, if
we change the order of the balls arrival between Tt and Tt+1 while keeping the
sequence compact, and not decreasing the overflow at step Tt+1, then the gain
ratio between OPT and FRC may only increase.

The main lemma asserts that if we postpone a ball from one step to the
next, then the load of the fractional algorithm can only increase. Intuitively, the
fractional algorithm has less opportunities to extract this volume, therefore it
retains more volume. In fact, we prove that the load will be higher for any prefix
of blocks.

Lemma 6. Let X,X ′ be input sequences s.t. X` ≥ v, X ′` = X` − v, X ′`+1 =
X`+1 + v, X ′i = Xi for i 6= `, `+ 1. Then, for any k and any i ≥ `+ 1, we have

k∑
r=1

Lri (X
′) ≥

k∑
r=1

Lri (X) (2)

Since there is no overflow in an inner step, by Lemma 6 it follows that delaying
a ball may only increase the total overflow in FRC. Therefore, delaying a ball
in an inner step without decreasing the optimal gain (i.e., without causing an
underflow in OPT) can only increase the gain ratio. We may delay a ball in an
inner step i if Xi > 0 and LOPT

i = Xi + LOPT
i−1 − 1 ≥ 2 (recall that there is no

underflow if LOPT
j ≥ 1 for any j). Therefore,

Corollary 3. Given a compact sequence of balls X with a maximum gain ratio
ρ(X), and T the set of overflow steps for X, we may assume that for any inner
step i /∈ T we have

Xi =

{
0, if LOPT

i−1 ≥ 2,

1, if LOPT
i−1 = 1.

Corollary 3 allow us to characterize the maximum gain ratio sequence given the
overflow steps T .

Lemma 7. For a maximum gain ratio sequence X, where T is the set of over-
flow steps, we have

– 〈X1, . . . , XT1〉 = 〈1, . . . , 1, B〉.
– If Tt+1 − Tt = d ≤ B, then 〈XTt+1, . . . , XTt+1〉 = 〈0, . . . , 0, d〉.
– If Tt+1−Tt = d > B, then 〈XTt+1, . . . , XTt+1

〉 = 〈0, . . . , 0, 1, . . . , 1, B〉, where
the number of 0’s is B − 1.

Analysis of the worst gain ratio of the fractional algorithm We bound
the worst gain ratio using the characterization of the worst gain ratio sequence.
Let V (d) be the load in FRC after d steps, assuming that FRC starts with a full
load (i.e., a ball in each bin), and in the subsequent d steps no other balls arrive.

Lemma 8. The competitive ratio of the fractional algorithm FRC is
ρ ≤ maxd≥B

d
d−V (d)−B+V (d−B) .

Analysis of the worst gain ratio for bounded probability functions We
conclude the bounding of the fractional algorithm by analyzing V (d) for bounded
probability functions. Let H be the cumulative distribution function of p. Define
f as f(0) = 1, f ′(x) = −Hp(f(x)), let pfac = maxx p(x+K/B)/p(x). We claim
that V (d) ≈ B · f(d/B). Since, we observe that after d steps most of the volume
V (d) is at blocks with higher indices. So the rate of change, i.e., the extracted
volume, is approximately −H(V (d)/B). Formally:

Lemma 9. Let f be the solution for the differential equation f ′(x) = −Hp(f(x)),
with f(0) = 1. The load in FRCKp after d steps, starting with a full load, V (d),

satisfies B · f(d/B) ≤ V (d) ≤ B · f(d/B) + d(pfac − 1).

For any p we can compute f (analytically or numerically) and bound the
competitive ratio (under the assumption pfac − 1 = o(1)):

ρFRC ≤ maxx≥1

{
x

x−f(x)−1+f(x−1)

}
(1 + o(1)).

This concludes the proof of Theorem 7.

B Omitted Proofs

Proof of Lemma 4. First, if the sequence X has on overflow at step j, we can
omit the overflown balls from that step. The optimal gain and the TOB gain do
not change, since the optimal load is never higher than the TOB load. Second,
if the sequence X has an underflow at step j, then we can omit that step. The
optimal gain does not change, while the TOB gain does not increase since p
is monotone. We can repeat this procedure, and eventually we get a sequence
without any underflow or overflow.

Proof of Lemma 5. Consider a sequence where there exists a step such that
FRC is fully loaded at step i, but OPT is not. As a consequence, we may modify
the sequence by shifting balls arrival from the remainder of the sequence to this
step. Since OPT was not full, the ball sequence stays compact. Furthermore, the
gain of OPT does not change, while the gain of FRC cannot increase since the
shifted balls overflown, and hence, the gain ratio may only increase. Note that,
there must be other balls in the rest of the sequence, since otherwise we may
increase the gain ratio by adding an additional ball to step i. Notice that this
modification does not change the gain of FRC, and increases the gain of OPT.

Lemma 10. For any β1 ≥ β2 ≥ · · · ≥ βk ≥ 0 and for any α1, . . . αk s.t for all
j ≤ k,

∑j
r=1 αr ≥ 0, we have

∑k
i=1 βiαi ≥ 0.

Proof. The proof follows since
∑k
i=1 βiαi is a positive linear combination of∑j

r=1 αr.

Proof of Lemma 6. We separate the arrival at step `+ 1 of X ′`+1 = v+X`+1

into the arrival of v followed by the arrival of X`+1. We first prove that after the
arrival of v, the claimed inequalities hold for any k. If for the input X, v was
added to block r (we can assume w.l.o.g. that v is small enough for one block),
then after the extraction step, the total difference in the loads is v′(≤ v) and is
in the blocks r and r + 1. If for the input X ′ the v volume is added to blocks
preceding r then obviously all the relations 2 hold, otherwise there is a vacant
volume at blocks r and r + 1, so the volume fills these gaps before filling any
other higher-index blocks. Therefore, relations 2 hold.

Next, we prove that if the inequalities hold at some moment of time, they
will continue to hold after an arrival event and after an extraction event hence,
by induction the inequalities hold for any i ≥ ` + 1, since the two sequences
have precisely the same arrival and extraction events (after the arrival of v). We
first consider an extraction event, by summing relations (1). The load after an
extraction event at the first k blocks is

k−1∑
r=1

Lr
(

1− qr

K

)
+ Lk

1−
∑
r≥k

qr

K

For any k, let αr = Lr(X ′) − Lr(X), βr = 1 − qr

K , βk = 1 −
∑
r≥k

qr

K . The

induction assumption is equivalent to: for any j,
∑j
i=1 αi ≥ 0. Moreover, since q

is monotone, for any r it holds that βr ≥ βr+1. By Lemma 10,
∑k
r=1 αrβr ≥ 0,

which means that relations 2 hold after the extraction event. Next, we deal with
the arrival of a new volume u. Assume w.l.o.g. that the volume is added in X ′

to block r, therefore all the blocks 1, . . . , r − 1 are full. Then the relations hold
for these prefixes. For the remaining blocks relations 2 hold since we have added
at most the volume u to them.

Proof of Lemma 7. First, we prove that Xr = 1, for r < T1, by Corollary 3,
for each r /∈ T we have Xr ∈ {0, 1}. Therefore, for any r < T1 we have LOPT

r−1 ≤ 1,
hence Xr = 1. Next, we prove that for any Tt, Tt+1 and 0 < r < Tt+1 − Tt then
XTt+r = 0 if r < B and XTt+r = 1 otherwise. If r < B then LOPT

Tt+r−1 ≥
B − (r − 1) ≥ 2 hence, by Corollary 3, XTt+r = 0. Otherwise, since XTt+r′ = 0
for any r′ < B and XTt+r ∈ {0, 1}, we have LOPT

r−1 ≤ 1, therefore Xr = 1. Finally,
XTt+1

= min{d,B} since LOPT
Tt+1

= B.

Proof of Lemma 8. In order to bound % we proceed as follows. It is easy to
verify that after Tk there is no more balls arrival (otherwise we omit those balls
and subtract the same gain from OPT and FRC). Therefore, let d0 = T1, and
dt = Tt+1 − Tt, then

GOPT(X) = d0 +B +

T−1∑
t=1

di ,

GFRC(X) = d0 −Od0 +B +

T−1∑
t=1

(
di −OTt+1

)
,

and then

ρ(X) =
GOPT(X)

GFRC(X)
≤ max

{
d0 +B

d0 −Od0 +B
,max

t

{
dt

dt −OTt+1

}}
.

Let V̄ (d) be the load in FRC after d steps, assuming that FRC started with
an empty load, and in each of the subsequent d steps a single ball arrives. Using
these notations and Lemma 7, we can compute the overflow as follows:

– OT1 = V̄ (T1).

– OTt+1
= V (dt) + dt −B, if dt < B.

– OTt+1
= V (dt) + V̄ (dt −B), if dt ≥ B.

We thus get

%FRC ≤ max
d

{
d+B

d− V̄ (d) +B
, Id<B

d

B − V (d)
, Id≥B

d

d− V (d)− V̄ (d−B)

}
,

where Icondition = 1 if the condition holds, and 0 otherwise.

We observe that V (d) + V̄ (d) = B, since if we start with a ball in each bin
after an extraction and arrival of a ball, then each extraction is partially from
V , with the complement from V̄ . At each step the vacant volume in a block in
V (d) is exactly the volume taken in V̄ (d). Therefore,

%FRC ≤ max
d

{
d+B

d+ V (d)
, Id<B

d

B − V (d)
, Id≥B

d

d− V (d)−B + V (d−B)

}
Note that by putting d′ = d+B in the third expression, the result dominates

the first expression. Note also that V (d) is concave, since if there are more balls,
then the extracted volume is larger. Therefore (V (0) = B),

d

B − V (d)
≤ B

V (0)− V (B)
.

Hence, the third expression for d = B dominates the second expression in the
max formula. We conclude that

ρFRC ≤ max
d≥B

d

d− V (d)−B + V (d−B)
.

Proof of Lemma 9. Let W (r, d) be the volume left after d steps when r balls
are in the blocks with higher indices. We show that W (r, d) ≈W (r−H(r/B), d−
1) for pfac → 1 (since K/B → 0). First, we bound the extracted volume after
one extraction step, given that the r balls are in the blocks with higher indices.
Let k = B/K − dr/Be, be the first block with balls and b = r −K · br/Kc, the

volume in this block. The volume extracted at the next step is

r −W (r, 1) =

B/K∑
j=k+1

qj + qk
b

K

= H

(
(k + 1)K

B

)
+

(
H

(
kK

B

)
−H

(
(k + 1)K

B

))
b

K

≥ H(r/B)− (pfac − 1).

Since W (r, 0) = r, we have W (r, 1) ≤ W (r −H(r/B), 0) + (pfac − 1). We want
to write W (r, d) as a recursive function. Hence, except for the extracted volume
at the next step, W (r, d − 1) assumes that all the volume is in the blocks with
higher indices. For that we note that if a block and its predecessor are full, then
after an extraction event this block remains full. Therefore, we may need to push
at most one ball volume from a block to the successor block, which might reduce
the volume after d steps by at most pfac − 1. Therefore, we have

W (r, d) ≤W (r −H(r/B), d− 1) + 2(pfac − 1).

Defining f by f(0) = 1 and f(x + 1/B) = f(x) − H(f(x))/B, we get V (d) =
W (B, d) ≤ Bf(d/B)+2d(pfac−1). The bound onW (r, d) is tight, sinceW (r, 1) ≥
W (r − H(r/B), 0), and W (r, d) ≥ W (r − H(r/B), d − 1). We have V (d) ≥
Bf(d/B). Since we assume B >> 1, we get the following differential equation for
f :

f ′(x) = −H(f(x)).

Proof of Lemma 1. Observe that LBTOB
i is a random variable, and that the

loads in question form a Markov chain. Specifically, the conditional expectation
of the load of BTOB at any step i+1 depends only on the preceding load LBTOB

i .
Formally,

E
(
LBTOB
i+1 |L

BTOB
1 , . . . , LBTOB

i

)
= E

(
LBTOB
i+1 |L

BTOB
i

)
.

The conditional expectation of the load satisfies

E
(
LBTOB
i+1 |L

BTOB
i

)
≤ min

{
LBTOB
i ·

(
1− QBTOB

K +∆K

)
+Xi+1,K +∆K

}
.

Note that LBFRC
i+1 = min

{
LBFRC
i ·

(
1− QBFRC

K

)
+Xi+1,K

}
. We examine only

the cases where BFRC will not overflow, and BTOB will also not overflow, since
we enlarge it by ∆K. Therefore, w.l.o.g., we may assume that

E
(
LBTOB
i+1 |L

BTOB
i

)
= LBTOB

i ·
(

1− QBTOB

K +∆K

)
+Xi+1 = LBTOB

i ·
(

1− QBFRC

K

)
+Xi+1,

(3)

LBFRC
i+1 = LBFRC

i ·
(

1− QBFRC

K

)
+Xi+1. (4)

We now define the process Zi as the difference between LBTOB
i and LBFRC

i .
We note that given the difference at a step, the expected difference at the next
step is closer to 0. Since LBTOB

i = LBFRC
i + Zi, relations (3) and (4) yield

E[LBTOB
i+1 |Zi, L

BTOB
i] = LBTOB

i ·
(

1− QBFRC

K

)
+Xi+1

= LBFRC
i ·

(
1− QBFRC

K

)
+ Zi ·

(
1− QBFRC

K

)
+Xi+1

= LBFRC
i+1 + Zi ·

(
1− QBFRC

K

)
.

Therefore,
|E[Zi+1|Zi]| − |Zi| ≤ 0. (5)

Note that from (5) it follows that

E[Zi+1|Zi, Zi > 1] ≤ Zi,

E[Zi+1|Zi, Zi < −1] ≥ Zi.
Moreover, Zi+1 − Zi ≤ 2. Therefore, we can use Azuma’s inequality for any

interval (there are N2 intervals of length at most N).

Proof of Lemma 2. For the sake of our analysis, we split the input sequence
X, with respect to the fractional block, into two volume types: green and red, i.e.,
X = Xg+Xr. The green volume is the part that is added to the fractional block,
while the red volume is the part that has overflown in the fractional block. The
output sequence splits accordingly as Y = Y g+Y r. By definition, Y r,BFRC = Xr.
Now let Y BTOB = Y g,BTOB + Y r,BTOB , For the analyze, the green volume is not
aware of the red volume in the block, i.e. it may overflown it if the block is full.
Note that the green and the red are with respect to the fractional block.

By definition, Xg do not overflow on BFRC, hence, by Lemma 1, at any step it
holds that |Lg,BFRC − Lg,BTOB | ≤ ∆K with probability of at least εN . Therefore,
by volume preservation,

−∆K ≤
i∑

j=1

(
Y g,BTOB

j − Y g,BFRC

j

)
≤ ∆K. (6)

Next we deal with the red volume. By definition, Lr,BFRC = 0 and Xr
i > 0

only when Lg,BFRC

i = K, by Lemma 1, Lg,BTOB

i ≥ K −∆K. Hence, at any step
Lr,BTOB ≤ (K +∆K)− (K −∆K) = 2∆K. Therefore, by volume preservation

0 ≤
i∑

j=1

(
Y r,BTOB

j − Y r,BFRC

j

)
≤ 2∆K. (7)

Finally, Lemma 2 follows from adding relation 6 and relation 7.

Proof of Lemma 3. Let X be such a sequence. For the sequence X the proba-
bility that Xm (an input sequence for the blocks m, . . . , B/K) does not cause an
overflow to HYBm−1 is at least (1− ε)m−1. HYBm−1 and HYBm have the same
first m− 1 randomized blocks. By coupling, we assume that the input instance
Xm is the same for both algorithms. Let Y m be the output sequence of block m
in HYBm for the input Xm. Let Ȳ m be the (random) output sequence of block m
in HYBm for the input Xm. By applying Lemma 2 for the given Xm we get that
with probability of at least (1− ε) we have, −∆K ≤

∑i
j=1

(
Ȳ mj −Yj

m
)
≤ 3∆K.

The probability that Xm does not overflow HYBm as well as Ȳ m satisfies
the above relation is at least (1− ε)m−1(1− ε) = (1− ε)m. Accordingly, for such
sequences let X̄m+1 and Xm+1 be a pair of input sequences of HYBm,HYBm−1
(for the m + 1 block) respectively. One can verify that also the input sequence
satisfies,

−∆K ≤
i∑

j=1

(
X̄m+1
j −Xm+1

j

)
≤ 3∆K. (8)

Assume, by contradiction, that X̄m+1 overflows HYBm, let i ≤ N be the first
step at which overflow takes place. Let j < i be a step where X̄m+1

j > Xm+1
j . We

modify the sequence X̄m+1 by pushing v = X̄m+1
j −Xm+1

j volume from step j to
the next step j+1, by Lemma 6 the overflow on step i for the modified sequence
can only increase. Note that after the shift relation 8 still holds. We can do this
repeatedly, eventually we get the sequence X̂m+1 such that for any step j < i that
X̂m+1
j ≤ Xm+1

j . Since Xm+1 does not overflow for HYBm−1 by monotonicity

and by Observation 9, we conclude that on 〈X̂m+1
1 . . . , X̂m+1

i−1 , Xm+1
i 〉 algorithm

HYBm would have at least 4∆K vacant volume. Note that, X̂m+1
i − Xm+1

i ≤
4∆K since relation 8 holds. Hence, HYBm does not overflow in step i for sequence
X̂m+1 and hence it does not overflow in step i for sequence X̄m+1.

Proof of Theorem 8. We construct a randomized algorithm according to HYBB/K .

Therefore, we design a slightly smaller fractional algorithm F̃RC = HYB0. The

fractional algorithm F̃RC uses fewer bins B̃ < B than the randomized algorithm.
In addition, it reduces the total fractional probability, so that the total sum to
choose blocks is less than 1. These two modifications result in just a slightly big-
ger overflow in the fractional algorithm. We choose K = B̃7/8 and ∆K = B5/8.
Then the number of blocks is B̃1/8. For this choice of parameters, application
of Corollary 1 shows that for any sequence of length at most N ≤ B9/8 which

does not overflow F̃RC, this sequence will not overflow TOB = HYBB/K with
probability

(1−ε)B/K =

(
1−N3 exp

(
−∆K2

8N

))B/K
=

(
1−B27/24 exp

(
−B10/8

8B9/8

))B1/8

= 1−o(1).

We conclude that for sequences of length at most B9/8 the expected gain of the

randomized algorithm is at least the gain of F̃RC times 1− o(1).

For an input sequences longer than B9/8 we split the input sequence into
parts, each of length B9/8. After each part, we may assume that the current
load of the randomized algorithm is overflown, and the current fractional gain is
cleared and added to its gain. Since we consider a compact sequence, the total
gain of FRC on each part is Θ(B9/8). Therefore, the difference in the gain of the
after the modification is at least a factor of 1− B

B9/8 = 1− o(1) from the original
gain.

To complete the proof of Theorem 8, we relate F̃RC to FRC. Indeed, B =
B̃ + 5∆KB̃1/8 = B̃ + 5B̃6/8, and therefore B̃/B = 1 + o(1). We also bound the

reduction of the total probability in F̃RC. Note that we increase the probability

by at most a factor of ((K + 4∆K)/K)
B1/8

= 1 + o(1). By scaling we conclude

that GF̃RC(X) ≥ GFRC(X)(1− o(1)) for any input sequence X.

Additionally, for any input X sequence, let X ′ a truncated version of X with

respect of F̃RC to X i.e. X ′i ≤ Xi, G
F̃RC(X ′) = GF̃RC(X) and OF̃RC(X ′) = 0.

By Corollary 1,

GHYBB/K (X) ≥ GHYBB/K (X ′) ≥ GF̃RC(X ′)(1− o(1)) = GF̃RC(X)(1− o(1)).

This completes the proof of Theorem 8.

B.1 Analyzing a specific randomized algorithm against the optimal
one

A natural choice for H would be

Hp(x) = (1− x)α.

This yields a competitive ratio of 1.59, for α = 0.6. However, H is not admissible,
because its derivative is not bounded near x = 1. To fix this, we replace Hp,
keeping the notation, by

Hp(x) =
(1 + γ − x)α − γα

(1 + γ)α − γα

where γ ≥ 0 is small enough (e.g., γ = 0.001), which hardly affects the compet-
itive ratio. The competitive ratio can be reduced to 1.55 by choosing

Hp(x) =
(1 + γ − x)α + βx− γα

(1 + γ)α + β − γα
,

where α = 0.13, β = 2.5, and γ = 0.001. This concludes the proof of Theorem 1.

C Lower bounds proofs

Proof of Theorem 5. For any deterministic algorithm we describe a sequence
and an assignment to the bins. The sequence is fixed for all algorithms and it
is X = 〈1, . . . , 1, B〉, where the number of 1’s is B − 1. The assignment to the
bins depends on the algorithm. Specifically, let b1, . . . , bB−1 be the indices of the
first B − 1 bins that the algorithm clears. There exists a bin j1 ∈ {1, . . . , B}
s.t. j1 6= bi for any i ≥ 1, since there are at most B − 1 different numbers in
b1, . . . , bB−1. Hence, the algorithm does not clear bin j1 in the first B − 1 steps.
Next, there exists j2 ∈ {1, . . . , B} − {j1} s.t. j2 6= bi for any i ≥ 2. Similarly,
we define ji for 1 ≤ i ≤ B − 1. Eventually, we have B − 1 different indices
j1, . . . , jB−1. The adversary assigns the first ball to bin j1, the second ball to
bin j2, and so on. This assignment is feasible since the indices are different.
Moreover, the algorithm does not clear any ball in the first B − 1 extractions,
while the optimal algorithm clears B− 1 balls, and all its bins are vacant. After
the first B−1 balls, as mentioned, B balls arrive at once. Those balls are stored
in the optimal algorithm run; however, B− 1 balls out of them are discarded by
the algorithm. Therefore, the optimal gain is 2B − 1, while the algorithm gain
is B. Note that we can repeat this sequence after additional B extraction events
with no balls arriving.

Proof of Theorem 2. For any algorithm ALG, let EALG
h (k) denote the ex-

pected number of balls extracted, in extractions steps k+ 1, . . . , k+B−1, given
that in ALG at step k all the bins contain a ball, and no more balls arrive. In
addition, let EALG

t (k) denote the expected number of balls extracted, in steps
k, . . . , k+B−1, starting with empty bins, and so that at steps k+1, . . . , k+B−1
a single ball arrives, and the adversary assigns each new ball to the last examined
bin.

Lemma 11. For any algorithm and for any k, we have EALG
h (k) +EALG

t (k) =
B.

Proof. For each sequence of bins we define an indicator Ik(j), where Ik(j) indi-
cates whether the bin examined in step k+ j is different from all bins examined
in steps k, . . . , k + j − 1. Therefore, we have EALG

h (k) = E[
∑B−1
j=0 Ik(j)] and

EALG
t (k) = E[

∑B−1
j=0 (1− Ik(j))]

We examine EALG
h (k) for k ∈ {0, B, 2B, . . . , dB} for some d.

– Case 1: there exists i s.t. EALG
h (iB) ≥ 2B/3. We consider the sequence

〈0, . . . 0, 1, . . . , 1, B〉, where the number of 0’s is iB and the number of 1’s is
B. The adversary assigns each ball to the most recently examined bin (except
in the last step). By Lemma 11, EALG

t (iB) ≤ B/3, hence the expected gain
for this sequence is at most 4B/3, while the optimal gain is 2B, and the
ratio is 3/2.

– Case 2: for all i, EALG
h (iB) < 2B/3. Set X̃ = 〈B, 0, . . . , 0〉 where the number

of 0’s is B−1 and the input sequence isX =< X̃, . . . , X̃ >, where the number

of X̃’s is d, the optimal gain is dB, while ALG gain is at most 2dB/3 + B,
and the ratio 1/(2/3 + 1/d).

For any ALG, case 1 or 2 happens, therefore we can choose d large enough
and conclude that the competitive ratio of ALG is at least 1.5− ε, for any ε ≥ 0.
Note that we can repeat this process for any dB steps.

D Application: Prompt Mechanism for Packet Scheduling

We consider the problem of developing prompt truthful mechanisms for periodic
bounded capacity auctions. One practical motivation for studying the above prob-
lem relates to buffer management issues arising in context of network devices
such as switches and routers.

In this application domain, one deals with incoming sequences of (strate-
gic) packets with private values for being served. There is a buffer that can
accommodate a bounded number of packets at any give time. One packet can
be transmitted in each time slot. The goal is to design a truthful prompt mecha-
nism maximizing the total value of the transmitted packets (packets are charged
only if transmitted). In a prompt mechanism [7] the price for a packet should be
determined at its transmission.

One possible prompt mechanism for this problem is FIFO transmission with
greedy admission control (i.e., one keeps the packets with the highest values). The
FIFO mechanism is truthful, 2-competitive [10], and supports prompt payments.
Specifically, it is easy to prove that the payment of each transmitted packet
depends only on the bids of buyers that arrived before its transmission. In fact,
computing these prices is simple. Essentially, the price for a transmitted packet
is the maximum over all the bids of rejected packets between the arrival of that
packet and its transmission time.

A mechanism with greedy admission control and which transmits a packet
independently and uniformly at random, was analyzed in [4]. Specifically, therein
it was shown how to reduce the competitive ratio of such mechanisms to the value
of loss of serving in the dark. By reducing the loss of serving in the dark using a
non-uniform distribution one arrives at the ratio 1.55. By using Theorem 1, we
achieve a 1.55 competitive prompt mechanism. Since the technical details of the
reduction appear in [4], we omit them.

	Serving in the Dark should be done Non-Uniformly

