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Abstract

In the d-dimensional bin packing problem (VBP), one is given vectors x1,x2, . . . ,xn ∈Rd and the goal
is to find a partition into a minimum number of feasible sets: {1,2 . . . ,n}= ∪s

i Bi. A set Bi is feasible if
∑ j∈Bi x j ≤ 1, where 1 denotes the all 1’s vector. For online VBP, it has been outstanding for almost 20
years to clarify the gap between the best lower bound Ω(1) on the competitive ratio versus the best upper
bound of O(d). We settle this by describing a Ω(d1−ε) lower bound. We also give strong lower bounds
(of Ω(d

1
B−ε ) ) if the bin size B ∈ Z+ is allowed to grow. Finally, we discuss almost-matching upper

bound results for general values of B; we show an upper bound whose exponent is additively “shifted by
1" from the lower bound exponent.

1 Introduction

We study the vector bin packing problem (VBP) which has received renewed attention in connection with
research on virtual machine placement in cloud computing, e.g., [23, 18, 22]. In the offline version, one is
given a collection V = {x1,x2, . . . ,xn} of vectors xi ∈ [0,1]d , and a subset X ⊆V is a feasible bin if ∑xi∈X xi≤
1. If the bins have size B, then feasibility asks for ∑xi∈X xi ≤ B (bold face indicates a d-dimensional vector).
We denote by OPT (V ) the minimum number of bins needed to partition the vectors into feasible bins. If all
vectors are binary, we refer to this as {0,1} VBP. We also sometimes refer to the packing integer program
(PIP) version of the problem, where we seek the largest set of vectors which fits into a single bin.

In the online version, the vectors arrive one by one, and at the time of arrival, the algorithm A must either
assign a vector to an open bin, or open a “new” bin to which it is assigned (maintaining bin feasibility of
course). The algorithm’s competitive ratio on an instance V is A(V )

OPT (V ) , where A(V ) denotes the number of
bins opened by A. Similarly, its competitive ratio on a class of instances is the worst ratio on an instance
in the class; its overall competitive ratio is this measure taken on the class of all d-dimensional instances of
VBP.
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While there is a simple first-fit O(d)-competitive algorithm for VBP (see [11]), the best lower bounds
have been constant. Specifically, the bounds from [9] are at most 2. As pointed out in [10], this gap has
persisted, and in fact in [7] it is conjectured to be super-constant, though sublinear. We show (Section 2) a
lower bound of Ω(d1−ε) for any ε > 0 giving an essentially tight result. The arguments make critical use of
techniques from [14] for online colouring and [5] for stochastic PIPs. We also need further structural insights
into the class of graphs used by [14] - see Section 2.1. Our main lower bound results are the following.

Theorem 1.1. For any integer B≥ 1, any deterministic online algorithm for VBP has a competitive ratio of
Ω(d

1
B−ε). For {0,1} VBP the lower bound is Ω(d

1
B+1−ε).

These lower bounds are information-theoretic and hence apply also to exponential time algorithms.
These bounds are tight for B = 1 since there is a (d + .7)-competitive algorithm for V BP [11]. In fact for
B = 1, this settles a problem pointed out in [10]: “the main open problem in on-line d-dimensional vector
packing consists in narrowing the wide gap between 2 and d + 7/10”. However, for B ≥ 2, there was a
gap in our understanding. For instance, for {0,1} VBP and B ≥ 2, it is known that the greedy algorithm is
2B
√

d-competitive. This upper bound exponent of 1
2 is “off” from our lower bound exponent of 1

B+1 (which
seems the right answer). We partially rectify this in Section 3 via the following upper bound.

Theorem 1.2. There are online V BP algorithms for B≥ 2 with competitive ratio:

• O(d1/(B−1) logdB/(B−1)), for [0,1]d vectors.

• O(d1/B logd(B+1)/B), for {0,1}d vectors.

Note that for B ≥ logd the bound becomes O(logd). It is worthwhile to mention that there is still an
additive“shift by 1" gap in the exponent. Specifically, for {0,1} vectors, the exponent of the upper bound is
1/B whereas the exponent of the lower bound is 1/(B+1). For general vectors the difference in exponent
is 1/(B−1) versus 1/B.

1.1 Techniques

For the lower bound, a core idea that we use is a lower bound strategy for online colouring that has been
around for some time [14]. They show that there are graphs with chromatic number O(logn) for which
any online algorithm may use up to n/ logn colours. In the online colouring model, an adversary produces
a sequence of nodes v1,v2, . . . ,vn such that upon arrival, vi reveals its neighbours amongst v1,v2, . . . ,vi−1.
Moreover, in their model the adversary is transparent in that it reveals the actual colour of vi just after the
online algorithm makes its choice. Strangely, this extra feature is important for our arguments to work.
Similar bounds for colouring are given in [13] for a stronger model, where the graph being coloured is
revealed to the algorithm at the beginning (but the adversary selects a subgraph to be coloured). We refer
the reader to the surveys of online packing (and covering) [10] and [4] for further background.

For the upper bound we combine some state of the art techniques. The algorithm we present is based
on two parts. The first part solves V BP using a load balancing technique with a set of virtual enlarged bins
(of size cB logd). The algorithm decides on the assignments using exponential weights for each virtual bin.
The second part assigns vectors of each virtual bin to real bins of size B. For the second part we present
two algorithms. First, a simple randomized algorithm, and we use Chernoff bounds to compute the expected
number of bins. Second, a deterministic algorithm which is a de-randomization of the randomized algorithm
using techniques from [1]. Combining both parts produces a V BP algorithm with the desired performance.
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1.2 Related Work

VBP has classical connections to scheduling problems where jobs need to be run on machines, each with a
bounded supply of some d resources (e.g., CPU time, memory etc). Such applications have been actively
studied recently due to interest in cloud computing, e.g., the problem of virtual machine placement and
migration, cf. [18].

Epstein [7], largely motivated by the gap for online VBP, initiated the study of d-dimensional vector
packing with variable sized bins. In this case, one is given a collection B of bin capacity profiles (each a
vector in Rd), where the collection is assumed to contain 1. In that setting, they can show that for certain
choices of B, one may obtain linear lower bounds, whereas for other choices, the competitive ratio can be at
most 1+ ε (the choice of B depends on ε). They conjecture that in the classical case, where B = {1}, the
competitive ratio is super-constant, but sublinear. When d = 1, variable-sized bin packing was introduced
by Friesen et al. [8] and subsequently studied in [19].

There is also extensive work on (polytime) approximation algorithms for offline VBP cf. [3]. We
mention that until recently there was a gap between Ω(d.5−ε) and O(d1−ε) for the approximation version of
offline PIP. This was settled in [5] in their study of stochastic PIPs. In [2] it was shown that for any ε > 0,
a polytime d.5−ε -approximation for VBP would imply NP=ZPP. By using techniques of [6] it is not hard to
strengthen this lower bound to d1−ε ; the arguments become apparent in Section 2.2.

Proposition 1.3. For any ε > 0, a polytime
d1−ε -approximation for VBP implies that NP=ZPP.

In contrast, our lower bound is information-theoretic and holds without any complexity assumptions. In
particular it applies also to exponential time algorithms.

We close by remarking that while online packing (PIPs) are structurally very related to online VBP,
lower bounds for the packing version are more immediate. For instance, the online maximum stable set
problem (in the setting described above for online colouring) is completely trivial. This is in stark contrast
to the relatively rich theory for online colouring (cf. [20, 12, 15, 17]). A trivial lower bound of n is achieved
as follows. As soon as the online algorithm puts some node in its stable set, the adversary makes all future
nodes adjacent to the selected node. This argument is not quite correct for online PIPs, since the adversary
must reveal the whole column being packed (i.e., adjacencies to future nodes as well). See Appendix A for
a slightly more elaborate and valid argument.

2 Lower Bounds

A core idea in the first step of our lower bound proof employs arguments from [14] which shows a lower
bound for online colouring. Importantly for us, their results hold for the following class of graphs, which
we call the HS graphs. An HS graph G of order k (assume k even) is a graph whose nodes are a sequence
(v1,v2, . . . ,vn) with the following additional properties. G has a k-colouring c : V → [k] which is compatible
with some admissible colour assignment. Each node v has been assigned a k/2 subset F(v) of [k] (its
inadmissible set) and for each u ≺ v (in the sequence), uv ∈ E(G) if and only if c(u) ∈ F(v). We call this
extra property consistency. The number of nodes in such an HS graph is assumed to be n = k

2 ·
(k

k
2

)
, and so

k = O(logn). In particular, it is important to note that consistency implies: if v is adjacent to some node of
colour c before it in the sequence, then it is adjacent to all nodes of colour c before it.

In their work, the adversary produces a sequence of n nodes v1,v2, . . . ,vn of some HS graph. When
it announces vi, it must share all adjacencies to earlier nodes in the sequence. The adversary can even
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Adversary’s Colouring

n
1

B+1−ε (B + 1)-free graphs

G1 G2
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k + 1 B-free subgraphs of G1

(B − 1)-free Graphs

Last Layer

. . .

node’s final colour G1 × 1× 2× 0

0 1 2

announce k and n ahead of time. Moreover, it “taunts” the online algorithm in the following sense: after the
online algorithm colours vi, the adversary announces its real colour c(vi). These additional properties are
referred to as a transparent adversary. They establish that there are such graphs with k = O(logn) for which
any online algorithm will use Ω( n

logn) colours. That is, the adversary may force the algorithm to use this
many colours. Their elegant result is succinctly captured in the following.

Theorem 2.1 ([14]). For any online colouring algorithm, its competitive ratio on the class HS is at least
2n/log2n, even against a transparent adversary. Specifically, any online colouring algorithm uses at least
2n/logn colours, where any graph in the HS class is logn coloured.

2.1 The {0,1} Case

We now establish the second half of Theorem 1.1. This bound is tight in the B = 1 case, and almost-tight
for B > 1. (See Section 3.)

Theorem 2.2. For any fixed ε ∈ (0,1), any online {0,1} VBP algorithm has competitive ratio at least
d

1
B+1−ε .

Proof. Theorem 2.1 strongly suggests a reduction strategy to obtain lower bounds for {0,1}VBP. We follow
this approach, and show how to convert an online stream of nodes in an HS graph, into an online stream of
vectors for VBP. We do this so that if there is a VBP algorithm with competitive ratio O(d

1
B+1−ε), then there

is an online colouring algorithm with competitive ratio O(n1−ε), thus contradicting Theorem 2.1. There
are two complications. The first is to deal with the fact that in VBP, the online algorithm has complete
information about incoming vectors, whereas in online colouring, we only know about adjacencies to nodes
which arrived earlier. We can deal with this by expanding the dimension of the space where packing occurs
from d = n to d = nB+1. Partly as a warm-up and partly for pedagogy, we describe this for the case B = 1.
The ideas are core to the more complicated arguments for larger B.
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Consider a stream of nodes arriving from an HS graph. For each new node vi, we supply the online VBP
algorithm a 0,1 vector xi with n 1’s, and (n2−n) 0’s. These form the columns of a matrix A that is gradually
built by the algorithm. For each j < i, if viv j is an edge of the HS graph, then find a row which has exactly
one 1 in column j. The vector xi (i.e., next column of A) will also include a 1 in this row. If vi saw r earlier
nodes, then we place r 1’s in this fashion. We then place (n− r) 1’s in fresh rows, i.e., rows such that A does
not yet contain any 1’s. These will be used for later nodes which are adjacent to vi.

Let A be the final matrix constructed, and note that if Az ≤ 1 for some z ∈ {0,1}n, then z must be the
incidence vector of a stable set. Hence the optimal offline solution for VBP is precisely χ(G), the chromatic
number of G. Since the number of rows d = n2, we have the following. If there is an online algorithm for
{0,1} VBP with competitive ratio at most d.5−ε , then it would produce a colouring of G that uses at most
n1−2ε colours. For any fixed ε > 0, this contradicts Theorem 2.1.

Note that this actually completes the proof in the case when B = 1. For B≥ 2, there are further compli-
cations. First, we use a construction from [6]. This helps us convert a stream of nodes in an HS graph, into a
stream of vectors with the following property. A valid online VBP will pack these vectors into bins such that
each bin corresponds to a KB+1-free graph of the HS graph. The second issue is to turn this into a “good”
colouring of the original graph. To each KB+1-free graph, we apply a second online filtering algorithm to
produce a good colouring. Interestingly, we make critical use of both the structure of HS graphs, as well
as the fact that the bounds of [14] are with respect to a transparent adversary. We need to know the earlier
colours!

Again, for simplicity we start by explaining the argument for the case B = 2. Suppose that we have an
online algorithm for {0,1} VBP with B = 2 which is d

1
B+1−ε -competitive for ε ∈ (0,1). Consider the nodes

of an HS graph G arriving v1,v2, . . . ,vn. To each of these we associate a 0,1 vector xi in Rn3
with n2 1’s

and (n3−n2) 0’s. As before the vector xi must prepare for future adjacencies. Now, it actually prepares for
future triangles that contain it. For each triangle vi,v j,vp involving node i, the algorithm does the following.
If i < j, p (it is the first node of the triangle to arrive) then it places a 1 in some row of A which does not yet
contain any 1’s; this is possible since there are d = n3 rows. Otherwise, if say j < i, then there is some row
which is already dedicated to this triangle and has a 1 in column j (and column p if p < i). We also place
a 1 in this row of vector xi. Consider the final matrix A constructed, and a 0,1 vector z (i.e., selection of
columns) such that Az≤ B. Then, following [6], these columns identify a triangle-free subgraph of G when
B = 2 (and a KB+1-free subgraph if we were preparing vectors for future (B+1)-cliques more generally).

Suppose that there is a d
1

B+1−ε -competitive algorithm for {0,1} VBP when B = 2. We claim that we can
convert this into an n1−3ε -competitive algorithm for colouring HS graphs, contradicting Theorem 2.1. To
see this, we feed the vectors (defined above) to our online VBP algorithm that partitions them online into
colour classes Gi : i = 1,2 . . . ,s which are necessarily triangle-free. Note first that for an HS graph of order
k, the minimum partition into triangle-free graphs is clearly at most k (since it is actually k-colourable).
Hence, by the competitive ratio, we have s ≤ d

1
3−εk = n1−3εk. We now show an online algorithm which

converts these triangle-free graphs into “real” colourings.
One easily proves that any triangle-free graph on N nodes, has chromatic number at most

√
N. However,

we do not know of an online algorithm which guarantees to find a colouring of size at most N1−β for any
β > 0. Instead, we appeal to the special structure of HS graphs. For each i, we feed the nodes of Gi to a
second online colouring algorithm.

The second online algorithm sees the nodes of Gi arrive as w1,w2, . . . ,wN , i.e., these are the nodes
corresponding to the vectors packed into triangle-free class i. The algorithm crucially depends on the fact
that when it processes some w j it actually knows the adversary’s colouring on nodes before it (but not w j

itself). If some new node w j is not adjacent to any earlier node, we assign it colour 0. Otherwise, let w j∗
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be the first node in Gi’s sequence to which it is adjacent. Assuming a transparent adversary, we also know
a colour c∗ = c(w j∗) ∈ {1,2, . . . ,k} for this node in G. We then assign the colour c∗ to w j for our own
colouring (we will actually assign w j∗ a different colour, possibly 0 for instance).

We now argue that this produces a valid colouring of Gi. Note that each node is either given colour 0
(and these nodes form a stable set), or it is “sinked” into the first node in the sequence (w1, . . . ,wN) to which
it is adjacent. Suppose some wi is sinked into the node w j∗ which has colour c∗. In fact w j∗ was the first
node in this sequence to get colour c∗. That is because in HS graphs, a node is adjacent to some node of
colour c∗ before it in the sequence, if and only if it is adjacent to every node of this colour before it in the
sequence. Hence the nodes we coloured c∗ form a star with center w j∗ . Since Gi is triangle-free, these nodes
form a stable set and so we have a valid colouring. Note that we used at most k+1 colours to online colour
Gi. In total, we have thus used (k+1)s≤ (k+1)n1−3εk. We may choose the order k of our HS graph large
enough so that (k+1)n1−3εk < 2n/ logn contradicting Theorem 2.1. (Recall k = O(logn) in HS graphs.)

We now consider the lower bound for B ≥ 3. Here we apply a recursive argument. Consider {0,1}
VBP where we now produce a matrix with d = nB+1 rows, one for each (B+ 1)-clique. Then a d

1
B+1−ε -

competitive algorithm will partition G into at most n1−(B+1)εk graphs, each of which is KB+1-free. On each
such subgraph Gi, we run the same online filtering algorithm used above on K3-free graphs. As before, each
colour class consists of a “star”, i.e., a set of nodes with a common neighbhour in the subgraph Gi. This
may no longer form a stable set, but it is guaranteed to be KB-free since Gi is KB+1-free. We then apply this
online algorithm again, on each of the resulting KB-free subgraphs. We call this filtering. Note that a node
wi again only looks at nodes w j which arrived before it, but in addition it only considers nodes that had the
same colour in all of the preceding filtering phases. Figure 2.1 gives an example of the filtering process on
the first KB+1-free graph G1. After filtering B−2 times, we are guaranteed to end up with K3-free classes.
One further round of filtering then guarantees that the final colour classes are indeed stable sets, just as in
the B = 2 case. This produces a colouring of G as follows. If a node was in Gi, and the colours it received
in the B− 1 filters (one for each Kt-free subgraphs, t = B+ 1,B,B− 1, . . . ,3) were cB+1,cB, . . ., then it is
assigned colour G1× cB+1× cB . . .. Since at most k+ 1 colours are used at each layer, the total number of
colours used is at most (k+ 1)B−1n1−(B+1)ε . Since B is a constant, we may choose the order k of our HS
graph large enough so that (k+1)B−1n1−(B+1)ε < 2n/ logn contradicting Theorem 2.1. (Recall k = O(logn)
in HS graphs.)

2.2 The [0,1] Case

The lower bound for the general case needs some modification. In particular, we employ an idea from [6]
that was used in closing the approximation gap associated to the offline version of PIP.

We show that a d1−ε -competitive algorithm for VBP would imply an n1−ε competitive algorithm for
colouring the family of HS graphs. We follow the proof of Theorem 2.2, feeding vectors xi to an online
VBP algorithm as we receive nodes from some graph G. The vectors now live in [0,1]n. We set the ith

component of xi to 1, and for each j < i with viv j ∈ E(G), we place 1
n in the jth component. All other entries

are 0. For the final matrix A, we have that Az ≤ 1 for a 0,1 vector z, implies that z is the incidence vector
of a stable set. Hence a valid (online) vector packing again identifies a valid (online) colouring of G. Since
d = n, a d1−ε -competitive VBP algorithm, would produce a n1−ε -competitive algorithm for colouring HS
graphs, contradicting Theorem 2.1. This establishes a complete proof of the first half of Theorem 1.1 for the
case B = 1.

In the B = 2 case, we now produce vectors “prepared” for future triangles as in the proof of the {0,1}
VBP, B = 2 case. However, we are able to do this using only d = n2 dimensions (not d3) as follows. This
combines several ideas we have seen so far. Each vector will have entries in 0,1, 1

n and each row will be
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associated to (at most) one edge. Suppose that vi,v j,vp forms a triangle in G where j < p < i. When j
arrives, the vector x j is prepared for the edge jp by placing a 1 in a fresh row. When p arrives, it places a 1
in the same row. In the future, for any node i arriving which forms a triangle with j, p the vector xi places
a 1/n in the row corresponding to the edge jp. One easily sees again that for the resulting matrix A, any
{0,1} solution to Az≤ 2 identifies a triangle-free subgraph. (And there is an obvious extension for general
B.) The rest of the proof is similar to Theorem 2.2 and we omit the details in this submission.

2.3 Randomized Online Algorithms

It is natural to ask if randomization can improve the situation for online vector bin packing. We can, however,
give similar lower bounds based on results in [14] for randomized online colouring. They use the same
construction as for Theorem 2.1 but appeal to Yao’s Lemma [21]. That is, it is enough to exhibit a distribution
of k-colourable graphs for which the expected number of colours used by any deterministic algorithm is at
least n/k. As before, the distribution can be chosen to have support restricted to HS graphs of order k (hence
k = O(logn)). The adversary constructs a graph from this distribution in advance and hence oblivious to the
choices of the online algorithm. They prove the following for sufficiently large n: the competitive ratio of
any randomized online colouring algorithm is at least least n/(16log2n), even if its input is restricted to HS
graphs.

We may piggyback on their analysis of expected behaviour of a deterministic algorithm as follows.
An HS graph is determined by a sequence of nodes vi together with a subset F(vi) of admissible colours,
where |F(vi)| = k/2, and an assignment of colours to the nodes (obeying consistency). The distribution is
as follows. The graph is generated iteratively where each F(vi) is a random k/2 subset of [k]. Then vi is
made adjacent to the appropriate nodes to preserve consistency. It is then assigned a random colour from
[k]−F(vi) (the admissible colours). Consider {0,1} VBP. We may define a 1-1 map to the space of n2×n
matrices used in the lower bound of VBP. As we have argued, a solution of size X to the VBP instance
immediately yields a solution of the same size for the colouring instance. Hence the expected performance
of a deterministic algorithm for VBP could be no better than that for online colouring.

3 A competitive VBP algorithm

In the case of B = 1 our lower bounds are tight. Indeed, for the [0,1]d case, there is a (d + .7)-competitive
algorithm based on first fit [11]. The bounds are also tight for the {0,1} case - see Section 5.

We now present and algorithm for B≥ 2. As mention in the introduction, the algorithm is based on two
parts. The first part solves V BP using a load balancing technique with a set of virtual enlarged bins (of size
cB logd). The load balancing uses exponential weights to decide on the assignment. The second part assigns
vectors of each virtual bin to real various bins of size B. For the second part we present two algorithms, a
randomized algorithm and a deterministic algorithm. Combining both parts produces a V BP algorithm with
the desired performance.

3.1 The virtual VBP algorithm.

In the following, let opt = OPT (x) be the minimum number of bins of size B required to assign vectors
sequence x in off-line fashion. We present an online V BP algorithm that uses 4opt virtual bins with size
cB logd for some constant c > 0. The input is an online stream of vectors x ∈ Rd . Let the ith vector be
xi = (xi1, . . . ,xid) where xik ∈ [0,1] for 1 ≤ i ≤ n and 1 ≤ k ≤ d. An online load balancing V BP algorithm
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assigns each vector to a bin. Let A(i) = j if vector i is assigned to bin j by the algorithm. The load of bin j
in coordinate k just before vector i arrives is

Li
jk = ∑

i′<i:A(i′)= j
xi′k.

In the following, when we drop the superscript, then L jk denotes the loads upon termination of the algorithm.
Additionally, let x̃ik = xik/B and L̃i

jk = Li
jk/B.

First we construct a procedure for virtual bin packing for what we call d-balanced vectors. A vector
xi ∈ [0,1]d is d-balanced if it satisfies:

max
r,k,xik>0

xir/xik ≤ d.

Let Mi = max
k

xik and c1 > 0,2 > a > 1 be constants that will be determined later. We now present

Procedure 1 for virtual bin packing of d-balanced vectors and Algorithm Virtual-VBP that uses Procedure 1
for virtual bin packing of general vectors.

m← 1. Open one active bin;
foreach vector xi do

Let j be the active bin with minimal ∑k aL̃i
jk+x̃ik −aL̃i

jk ;
if ∀k : L̃i

jk + x̃ik ≤ c1 logd then
assign vector i to bin j;

else ∗ f ailure∗
De-activate the m active bins;
m← 2m. Open and active new m active bins;
Assign xi to the first (empty) active bin;

end
Procedure 1: Virtual V BP for d-balanced vectors

begin
Init Procedure 1 for simulation;
foreach vector xi do

Define x′i as:

x′ik =

{
0 if xik

Mi
≤ 1

d .

xik otherwise.
Use Procedure 1 to assign vector x′i to
simulated bin j;
Assign xi to a virtual bin j;

end
end

Algorithm Virtual-VBP: Virtual VBP for general vectors

Theorem 3.1. Algorithm Virtual-VBP uses at most 4opt bins of size cB logd (where c = 2c1).

First we establish some properties of Procedure 1 when assigning a sequence x of d-balanced vectors.
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Lemma 3.2. Procedure 1 never fails on d-balanced vectors when it uses m≥ opt active bins of size c1B logd.

We will use Lemma 3.2 to prove the constant (in term of number of bins) bound.

Corollary 3.3. When applying Procedure 1 on d-balanced vectors, Procedure 1 opens at most 4opt bins.

of Corollary 3.3. Using Lemma 3.2, if the number of active bins m ≥ opt, then Procedure 1 does not open
any new bins. Therefore, the number of active bins is less than 2opt and the total number of opened bins is
less than 4opt.

In order to prove Lemma 3.2 we first show the following two lemmas.

Lemma 3.4. ∀a > 1 and 0≤ x≤ 1,ax−1≤ (a−1)x

Proof. The function f (x) = (a−1)x is linear in the section [0,1], but g(x) = ax−1 is convex. The functions
intersect at x = 0 and x = 1 and the lemma follows immediately since the functions are continuous.

Lemma 3.5. When applying Procedure 1 on d-balanced vectors, then for any active bins j, j′ and for each
coordinate k′ the following holds:

d

∑
k=1

aL̃ jk ≥ aL̃ j′k′
lna

d(a−1)a1/B .

Proof. Let i′ be the last vector assigned to bin j′ with xi′k′ > 0. Then for any active bin j:

d

∑
k=1

aL̃i′
j′k+x̃i′k −aL̃i′

j′k ≤
d

∑
k=1

aL̃i′
jk+x̃i′k −aL̃i′

jk .

The left side of the inequality satisfies

d

∑
k=1

aL̃i′
j′k+x̃i′k −aL̃i′

j′k ≥ aL̃i′
j′k′ (ax̃i′k′ −1)

≥ aL̃i′
j′k′ ln(a)x̃i′k′

≥ a(L̃ j′k′−1/B) ln(a)x̃i′k′

where the first inequality follows since the coordinate k′ is part of the sum; the second inequality follows
since for x > 0, ex−1≥ x (x = x̃i′k′ ln(a)> 0 for a > 1); the third inequality follows since i′ is the last vector
assigned to bin j′ and x̃i′k′ ≤ 1/B.
The right side of the inequality satisfies

d

∑
k=1

aL̃i′
jk+x̃i′k −aL̃i′

jk =
d

∑
k=1

aL̃i′
jk(ax̃i′k −1)

≤
d

∑
k=1

aL̃ jk(a−1)x̃i′k.

The inequality follows from Lemma 3.4 and monotonicity of aL̃i′
jk . From the two parts we get

d

∑
k=1

aL̃ jk(a−1)x̃i′k ≥ a(L̃ j′k′−1/B)x̃i′k′ lna.

9



Since xi′ is d-balanced, for all k we have x̃i′k/x̃i′k′ ≤ d and therefore:

d

∑
k=1

aL̃ jk ≥ aL̃ j′k′
lna

d(a−1)a1/B .

of Lemma 3.2. Assume there are m≥ opt active bins in Procedure 1. We prove that when assigning all the
vectors to the m active bins the load never exceeds c1B logd and hence there is no failure.

Let jopt(i) be the active bin in which the optimal algorithm assigned vector i. We can assume such a bin
exists since m≥ opt. By the definition of Procedure 1 the next chosen bin j satisfies:

d

∑
k=1

aL̃i
jk+x̃ik −aL̃i

jk ≤
d

∑
k=1

aL̃i
jopt (i)k+x̃ik −aL̃i

jopt (i)k

=
d

∑
k=1

aL̃i
jopt (i)k(ax̃ik −1)

≤ ∑
k

aL̃i
jopt (i)k(a−1)x̃ik

≤
d

∑
k=1

aL̃ jopt (i)k(a−1)x̃ik

where the second inequality follows from Lemma 3.4 and the last inequality follows from the monotonicity
of the load. Summing over all vectors:

∑
i

d

∑
k=1

aL̃i
j(i)k+x̃ik −aL̃i

j(i)k ≤

(a−1)∑
i

d

∑
k=1

aL̃ jopt (i)k x̃ik.

By replacing the order of summation we get

m

∑
j=1

d

∑
k=1

∑
i|A(i)= j

aL̃i
jk+x̃ik −aL̃i

jk ≤

(a−1)
m

∑
j=1

d

∑
k=1

aL̃ jk ∑
i|OPT (i)= j

x̃ik.

The load in the optimal assignment is at most B and hence ∑i|OPT (i)= j x̃ik ≤ 1. Additionally, for each j,k the
left hand side is a telescoping sum and hence

m

∑
j=1

d

∑
k=1

(aL̃ jk −a0)≤ (a−1)
m

∑
j=1

d

∑
k=1

aL̃ jk .

Therefore,
m

∑
j=1

d

∑
k=1

aL̃ jk −dm≤ (a−1)
m

∑
j=1

d

∑
k=1

aL̃ jk .

10



Hence,
m

∑
j=1

d

∑
k=1

aL̃ jk ≤ dm
2−a

.

Using Lemma 3.5, for each bin-coordinate pair j′,k′:

m ·aL̃ j′k′
lna

d(a−1)a1/B ≤
m

∑
j=1

d

∑
k=1

aL̃ jk ≤ dm
2−a

By rearranging the terms:

aL̃ j′k′ ≤ d2 (a−1)a1/B

(2−a) lna
.

For fixed a ∈ (1,2) we get L̃ j′k′ ≤ c1 logd as claimed.

We are now ready to prove the feasibility and competitiveness of Algorithm Virtual-VBP for general
vectors.

of Theorem 3.1. Note that the number of bins opened by Algorithm Virtual-VBP on vector sequence x is the
same as the number of bins opened by Procedure 1 on vector sequence x′. Recall that x′ik = xik if xik > Mi/d
and 0 otherwise. Therefore, for all i,k we have xik ≥ x′ik hence OPT (x′) ≤ OPT (x). By Corollary 3.3 the
number of bins opened by Procedure 1 is at most 4OPT (X ′) ≤ 4OPT (X). Additionally, the load on each
bin is:

∑
i:A(i)= j

xik = ∑
i:A(i)= j

(xik− x′ik)+ ∑
i:A(i)= j

x′ik

≤ ∑
i:A(i)= j

Mi

d
+ ∑

i:A(i)= j
x′ik

≤ dc1B logd
d

+ c1B logd

= 2c1B logd.

The second inequality follows from Lemma 3.2 and from ∑
i:A(i)= j

Mi≤ d ·c1B logd (by volume consideration).

3.2 The load balancing VBP algorithm.

In the last section we showed an online algorithm that packs the vectors into virtual bins of size cB logd.
In order to solve the V BP we need to pack into bins with size B. For that, we distribute each virtual bin’s
vectors into real bins. Initially we open r real bins for each virtual bin and whenever a vector is assigned to
this virtual bin, we choose uniformly at random one of the real bins associated with it and assign the vector
to this real bin if it is feasible. In a case of a failure, i.e. if the load of the chosen real bin after assignment
exceeds B, then we open r new real bins and direct future vectors to the new real bins. By using Chernoff
bounds and choosing r appropriately, the probability of failure is small enough so that the expected total
number of bins associated with each virtual bin is O(r).

11



begin
Init Algorithm Virtual-VBP for simulation;
foreach vector xi do

Use Algorithm Virtual-VBP to assign xi to virtual bin j;
Use Procedure 2 to assign vector xi of virtual bin j to its real bin;

end
end

Algorithm LB-VBP: The V BP algorithm

begin
Open r new active real bins;
foreach vector xi assigned to this virtual bin do

Choose uniformly at random active bin j;
if ∀k : Li

jk + xik ≤ B then
Assign vector i to real bin j;

else ∗ f ailure∗
De-activate the active bins ;
Open r new active bins;
Assign xi to a random active (empty) bin;

end
end

Procedure 2: Distributing vectors from a single virtual bin (randomized)

12



Theorem 3.6. Algorithm LB-VBP, using
r = Θ(d1/(B−1) logdB/(B−1)) in Procedure 2, provides a feasible assignment and achieves (expected) com-
petitive ratio of O(d1/(B−1) logdB/(B−1)).

In order to prove Theorem 3.6 we prove the following lemmas.

Lemma 3.7. Given a virtual bin with size cB logd. Distribute all of its vectors uniformly at random into
r = (ce logd)B/(B−1)(2d)1/(B−1) real bins. The probability that there exists a bin coordinate whose load
exceeds B is less then 1/2.

Proof. Let x1,x2, ...xN be the vectors assigned to the virtual bin. Let Y j
1 , ...,Y

j
N be random variables, where

Y j
i represents whether vector i is directed to the bin j. Let X jk

1 , ...,X jk
N representing the load accumulated in

bin j at coordinate k by vector i ,i.e. X jk
i = Y j

i xik. The load in bin j at coordinate k is X jk = ∑i X jk
i . Notice

that, E[X jk
i ] = xik/r and E[X jk] = E[∑i X jk

i ] = ∑i xik/r ≤ cB logd/r ≤ B. Let µk = E[X jk]. X jk
i ∈ [0,1] and

therefore by a Chernoff bound for any δk > 1:

Pr[X jk ≥ δkµk]≤
(

e
δk

)µkδk

.

Let δk = B/µk ≥ 1 and δ = min
k

δk. Therefore, the probability that overload occurs in bin j at coordinate k

is

Pr[X jk ≥ B]≤
(

e
δk

)B

≤
( e

δ

)B
.

Using a union-bound, the probability of an overload in some bin-pair coordinate is:

Pr[∃ j,k|X jk ≥ B] ≤ drPr[X jk ≥ B]

≤ dr
( e

δ

)B

≤ dr
(

ec logd
r

)B

=
d(ec logd)B

rB−1

=
1
2
.

where the last inequality follows from B/δ = max
k

µk ≤ cB logd/r and last equality follows from the defini-

tion of r.

Lemma 3.8. Let r = (ce logd)B/(B−1)(2d)1/(B−1). The expected number of bins opened by the Procedure 2
is O(r).

Proof. By Lemma 3.7 using r = (ce logd)B/(B−1)(2d)1/(B−1) the probability of opening r additional bins is
less then 1/2. Clearly, the probability of an ith additional opening of bins given (i−1) additional openings
is less then 1/2. Hence, the probability for opening ir bins is less then 1/2i. Therefore, the expected number
of open bins is at most 2r.

13



of Theorem 3.6. Since Procedure 2 checks that the load is at most B, the algorithm is feasible. From
Lemma 3.1 the number of virtual bins opened is at most 4opt, each with size cB logd. From Lemma 3.8 the
expected number of bins opened by each instance for these virtual bin vectors is O(d1/(B−1) logdB/(B−1)).
Therefore, the total expected number of bins is O(opt ·d1/(B−1) logdB/(B−1)).

From Theorem 3.6 we prove the existence of a randomized algorithm satisfying the first part of Theo-
rem 1.2.

4 De-randomizing the load balancing VBP algorithm.

We now present a procedure that distributes the vectors of a single virtual bin deterministically, with up to
a constant same number of bins as the randomized Procedure 2. This yields a deterministic V BP algorithm
with the same competitive ratio as Algorithm LB-VBP. We use de-randomizing techniques from [1]. Our
algorithm would use T c logd bins (where T will be chosen later). We will use potential function, when a
vector arrives, the algorithm assigns the vector to one of the bins, if by doing so the following potential
function does not increase. We will show that in each step such a bin exists. Let T ′ = ln(T +1). Define the
potential of coordinate k in bin j after the arrival of vector i as

Φ
i
jk = exp

{
T ′Li

jk−
i

∑
i′=1

xi′k

c logd

}
The potential function after the arrival of vector i is:

Φ
i =

1
dT c logd

T c logd

∑
j=1

d

∑
k=1

Φ
i
jk

begin
Open new T c logd active bins;
foreach vector xi assigned to this virtual bin do

Assign vector i to bin j s.t. Φi ≤Φi−1.
end

end
Procedure 3: Distributing single virtual bin (de-randomized)

First we prove the correctness of the Procedure 3, we prove that in each step such bin always exists.

Lemma 4.1. Initially, Φ0 ≤ 1 and throughout the algorithm, Φi > 0. In addition, when vector i arrives,
there exists a bin j such that assigning vector i to bin j does not increase the potential function.

Proof. It is easy to verify that initially the value of the potential function is exactly 1. Also, since the
potential function is a sum of exponential functions it is always positive. To prove the second part of the
claim we use a probabilistic argument. When vector i arrives we choose uniformly at random one of the
bins and assign the vector to it, i.e. each bin is selected with probability 1/(T c logd). We prove that with
this random trial the expected value of the potential function does not increase. This means that there exists
a bin j such that assigning the vector i to j does not increase the potential function. The expected value of
Φi

jk is:

14



E[Φi
jk] =

1
T c logd

(
Φ

i−1
jk eT ′xik− xik

c logd

)
+

(
1− 1

T c logd

)(
Φ

i−1
jk e−

xik
c logd

)
= Φ

i−1
jk e−

xik
c logd

(
1

T c logd
eT ′xik +1− 1

T c logd

)
= Φ

i−1
jk e−

xik
c logd

(
1

T c logd
(eT ′xik −1)+1

)
≤ Φ

i−1
jk e−

xik
c logd

(
1

T c logd
(eT ′−1)xik +1

)
= Φ

i−1
jk e−

xik
c logd

(
xik

c logd
+1
)

≤ Φ
i−1
jk

where the first inequality from Lemma 3.4 for a= eT ′ and x= xik, the last equality follows from the definition
of T ′, the last inequality follows from for any x > 0 we have 1+ x≤ ex . By linearity of expectation we get
E[Φi]≤Φi−1.

Lemma 4.2. Given a virtual bin with size cB logd. Assigning its vectors using Procedure 3 to T c logd bins
for T ′ = (ln(dc logd)+B)/(B−1) (recall that T = eT ′−1) then the load on each bin coordinate is at most
B.

Proof. From Lemma 4.1 the potential Φ≤ 1, since the potential is the summation of positive terms then for
all j,k, i we have Φi

jk/(T c logd)< 1. Hence

exp{T ′Li
jk−

i

∑
i′=1

xi′k

c logd
}< dT c logd

By rearranging the terms

Li
jk <

ln(dT c logd)+
i

∑
i′=1

xi′k

c logd

T ′

≤ ln(dT c logd)+B
T ′

≤ T ′+ ln(dc logd)+B
T ′

= B

where the second inequality follows from
∑

i
xik ≤ cB logd as these are vectors that assigned to a virtual bin, the last inequality implied by the definition

of T and the last equality implied by the definition of T ′.
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To get a deterministic V BP algorithm, we modify Algorithm LB-VBP, by replacing Procedure 2 with
Procedure 3. From these two lemmas above we get that this algorithm is feasible and has competitive ratio
of
O(d1/(B−1) logdB/(B−1)).

5 The VBP algorithm for the {0,1} case.

The greedy algorithm. For the {0,1} case with B = 1, the greedy algorithm is known to give a O(
√

d)-
competitive algorithm. For completeness we give the analysis and show that it extends also to the B ≥ 2
case. The algorithm greedily assigns an arriving vector to a bin with available space. If there is none, we
open a new bin. We classify vectors as large if 1T xi ≥

√
d, otherwise small. Let the number of large vectors

be k and the number small is n− k. Clearly opt ≥ k√
d

. Now consider a small vector xi that is blocked. Let
B1,B2, . . . ,Bs be the bins opened when it arrived. For each j = 1,2, . . . ,d we say xi is j-blocked for bin Bp,
if xi j = 1 and there is some vector v ∈ Bp with v j = 1. Let N j be the number of j-blocked bins, then clearly
opt ≥ N j. Moreover, since xi was small, we have N j > 0 for at most

√
d values of j. Since every Bp is

j-blocked for some j, we have that s ≤
√

dNmax ≤
√

dopt. It follows that the number of bins open at any
time is at most 2

√
dopt. Note that this also works for general B. In that case, if there are k large vectors,

then opt ≥ k
B
√

d
. Now, we say we are j-blocked in a bin if xi j = 1 and that bin already contains B vectors

with a 1 in component j. If we are j-blocked by N j bins, then again opt ≥ N j. Hence s≤
√

dNmax ≤
√

dopt
for an overall bound of 2B

√
dopt.

Improving the exponent for B ≥ 2. For the {0,1} case with B ≥ 2, we modify Algorithm LB-VBP
by using a different number of real bins in its procedure. Specifically, we use O(d1/B logd(B+1)/B) real bins
for each single virtual bin. This results in V BP algorithm for the {0,1} case that has a competitive ratio of
O(d1/B logd(B+1)/B).

We observe that in the {0,1} case overload does not occur if L jk < B+ 1. By modifying Lemma 3.7,
we prove that distribute a virtual bin vectors uniformly at random into r = (ce logd)(B+1)/B(2d)1/B real bins
then the probability that there exists a bin coordinate whose load exceeds B+ 1 is less then 1/2. For that,
we choose δk = (B+1)/µk and we get:

Pr[∃ j,k|X jk ≥ B+1] ≤ drPr[X jk ≥ B+1]

≤ dr
( e

δ

)B+1

≤ dr
(

ec logd
r

)B+1

=
d(ec logd)B+1

rB

=
1
2
.

Now, we can use Procedure 2 with r = O(d1/B logd(B+1)/B). Therefore, the competitive ratio of the
modified Algorithm LB-VBP for the {0,1} case is O(d1/B logd(B+1)/B). Accordingly, we can get a deter-
ministic algorithm with the same competitive ratio by using T ′ = (ln(dc logd)+B)/B in Procedure 3. The
choice of this T ′ in Lemma 4.2 implies that Li

jk < B+1, which prove feasibility for {0,1} vectors and yields
the same competitive ratio.
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6 Open Questions

The most interesting open problem is to close the small but intriguing gap between the upper and lower
bounds for general bins B≥ 2. In particular for the case B = Θ(logd), there is still a gap between a logarith-
mic upper bound to a constant lower bound. Another interesting question arises from the filtering algorithm
employed in the proof of Theorem 2.2 for online colouring K3-free HS graphs. Namely, that algorithm
needed the structure of HS graphs. Can this be eliminated? Concretely, is there an online colouring algo-
rithm for the class of K3-free graphs whose competitive ratio is O(n1−β ) for some β > 0? While such graphs
are
√

n-colourable, it appears prudent (necessary?) to use K3-freeness more directly. This is suggested by
the fact that there is no n1−β -competitive algorithm for colouring k-colourable graphs [16, 17] (indeed there
is barely a sublinear bound). One approach might be to leverage the polylog competitive algorithm of [17]
for colouring bipartite graphs. There are natural extensions of the question to the class of KB-free graphs for
larger B. Finally, the upper bounds are not quite tight in their exponents; this remains a challenge to explore.
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A Easy lower bound argument for Online Packing Version

The lower bound for online stable set mentioned in Section 1.2 can be adapted easily to online PIP as fol-
lows. The adversary feeds a sequence of nodes (vectors including all past and future adjacencies) v1,v2, . . .vi

each of which is adjacent to nodes vn/2+1,vn/2+2, . . . ,vn until either (a) we reach i = n/2 or (b) the algorithm
selects some vi. In Case (a), the adversary then feeds the remaining nodes v j : j > n/2 to form a clique.
Hence the algorithm missed the n/2 stable set v j : j≤ n/2, and can produce at best a stable set of size 1 here
on in. In Case (b), the adversary will feed vi+1, . . . ,vn/2 as a clique so the algorithm may pick at most one of
these. The adversary then feeds v j : j > n/2 as a stable set, but then the algorithm cannot pick any of these
as it committed to vi.
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